MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdis Structured version   Visualization version   GIF version

Theorem zdis 22619
Description: The integers are a discrete set in the topology on . (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
zdis (𝐽t ℤ) = 𝒫 ℤ

Proof of Theorem zdis
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 16092 . 2 (𝐽t ℤ) ⊆ 𝒫 ℤ
2 elpwi 4168 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℤ → 𝑥 ⊆ ℤ)
32sselda 3603 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℤ)
43zcnd 11483 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℂ)
5 cnxmet 22576 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
6 1rp 11836 . . . . . . . . 9 1 ∈ ℝ+
7 rpxr 11840 . . . . . . . . 9 (1 ∈ ℝ+ → 1 ∈ ℝ*)
86, 7ax-mp 5 . . . . . . . 8 1 ∈ ℝ*
9 recld2.1 . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 22585 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
1110blopn 22305 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
125, 8, 11mp3an13 1415 . . . . . . 7 (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
139cnfldtop 22587 . . . . . . . 8 𝐽 ∈ Top
14 zex 11386 . . . . . . . 8 ℤ ∈ V
15 elrestr 16089 . . . . . . . 8 ((𝐽 ∈ Top ∧ ℤ ∈ V ∧ (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
1613, 14, 15mp3an12 1414 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽 → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
174, 12, 163syl 18 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
18 blcntr 22218 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
195, 6, 18mp3an13 1415 . . . . . . . 8 (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
204, 19syl 17 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
2120, 3elind 3798 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
224adantr 481 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℂ)
23 inss2 3834 . . . . . . . . . . . 12 ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ ℤ
24 simpr 477 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
2523, 24sseldi 3601 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℤ)
2625zcnd 11483 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℂ)
273adantr 481 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℤ)
2827, 25zsubcld 11487 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℤ)
2928zcnd 11483 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℂ)
30 eqid 2622 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 22574 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3222, 26, 31syl2anc 693 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
33 inss1 3833 . . . . . . . . . . . . . . 15 ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ (𝑦(ball‘(abs ∘ − ))1)
3433, 24sseldi 3601 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1))
35 elbl2 22195 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
365, 8, 35mpanl12 718 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3722, 26, 36syl2anc 693 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3834, 37mpbid 222 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) < 1)
3932, 38eqbrtrrd 4677 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) < 1)
40 nn0abscl 14052 . . . . . . . . . . . . 13 ((𝑦𝑧) ∈ ℤ → (abs‘(𝑦𝑧)) ∈ ℕ0)
41 nn0lt10b 11439 . . . . . . . . . . . . 13 ((abs‘(𝑦𝑧)) ∈ ℕ0 → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4228, 40, 413syl 18 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4339, 42mpbid 222 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) = 0)
4429, 43abs00d 14185 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) = 0)
4522, 26, 44subeq0d 10400 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 = 𝑧)
46 simplr 792 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦𝑥)
4745, 46eqeltrrd 2702 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧𝑥)
4847ex 450 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → 𝑧𝑥))
4948ssrdv 3609 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)
50 eleq2 2690 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑦𝑧𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)))
51 sseq1 3626 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑧𝑥 ↔ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥))
5250, 51anbi12d 747 . . . . . . 7 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → ((𝑦𝑧𝑧𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)))
5352rspcev 3309 . . . . . 6 ((((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5417, 21, 49, 53syl12anc 1324 . . . . 5 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5554ralrimiva 2966 . . . 4 (𝑥 ∈ 𝒫 ℤ → ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
56 resttop 20964 . . . . . 6 ((𝐽 ∈ Top ∧ ℤ ∈ V) → (𝐽t ℤ) ∈ Top)
5713, 14, 56mp2an 708 . . . . 5 (𝐽t ℤ) ∈ Top
58 eltop2 20779 . . . . 5 ((𝐽t ℤ) ∈ Top → (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥)))
5957, 58ax-mp 5 . . . 4 (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
6055, 59sylibr 224 . . 3 (𝑥 ∈ 𝒫 ℤ → 𝑥 ∈ (𝐽t ℤ))
6160ssriv 3607 . 2 𝒫 ℤ ⊆ (𝐽t ℤ)
621, 61eqssi 3619 1 (𝐽t ℤ) = 𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  ccom 5118  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937  *cxr 10073   < clt 10074  cmin 10266  0cn0 11292  cz 11377  +crp 11832  abscabs 13974  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126
This theorem is referenced by:  sszcld  22620
  Copyright terms: Public domain W3C validator