| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zdis | Structured version Visualization version Unicode version | ||
| Description: The integers are a
discrete set in the topology on |
| Ref | Expression |
|---|---|
| recld2.1 |
|
| Ref | Expression |
|---|---|
| zdis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restsspw 16092 |
. 2
| |
| 2 | elpwi 4168 |
. . . . . . . . 9
| |
| 3 | 2 | sselda 3603 |
. . . . . . . 8
|
| 4 | 3 | zcnd 11483 |
. . . . . . 7
|
| 5 | cnxmet 22576 |
. . . . . . . 8
| |
| 6 | 1rp 11836 |
. . . . . . . . 9
| |
| 7 | rpxr 11840 |
. . . . . . . . 9
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
|
| 9 | recld2.1 |
. . . . . . . . . 10
| |
| 10 | 9 | cnfldtopn 22585 |
. . . . . . . . 9
|
| 11 | 10 | blopn 22305 |
. . . . . . . 8
|
| 12 | 5, 8, 11 | mp3an13 1415 |
. . . . . . 7
|
| 13 | 9 | cnfldtop 22587 |
. . . . . . . 8
|
| 14 | zex 11386 |
. . . . . . . 8
| |
| 15 | elrestr 16089 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | mp3an12 1414 |
. . . . . . 7
|
| 17 | 4, 12, 16 | 3syl 18 |
. . . . . 6
|
| 18 | blcntr 22218 |
. . . . . . . . 9
| |
| 19 | 5, 6, 18 | mp3an13 1415 |
. . . . . . . 8
|
| 20 | 4, 19 | syl 17 |
. . . . . . 7
|
| 21 | 20, 3 | elind 3798 |
. . . . . 6
|
| 22 | 4 | adantr 481 |
. . . . . . . . . 10
|
| 23 | inss2 3834 |
. . . . . . . . . . . 12
| |
| 24 | simpr 477 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | sseldi 3601 |
. . . . . . . . . . 11
|
| 26 | 25 | zcnd 11483 |
. . . . . . . . . 10
|
| 27 | 3 | adantr 481 |
. . . . . . . . . . . . 13
|
| 28 | 27, 25 | zsubcld 11487 |
. . . . . . . . . . . 12
|
| 29 | 28 | zcnd 11483 |
. . . . . . . . . . 11
|
| 30 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | cnmetdval 22574 |
. . . . . . . . . . . . . 14
|
| 32 | 22, 26, 31 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 33 | inss1 3833 |
. . . . . . . . . . . . . . 15
| |
| 34 | 33, 24 | sseldi 3601 |
. . . . . . . . . . . . . 14
|
| 35 | elbl2 22195 |
. . . . . . . . . . . . . . . 16
| |
| 36 | 5, 8, 35 | mpanl12 718 |
. . . . . . . . . . . . . . 15
|
| 37 | 22, 26, 36 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 38 | 34, 37 | mpbid 222 |
. . . . . . . . . . . . 13
|
| 39 | 32, 38 | eqbrtrrd 4677 |
. . . . . . . . . . . 12
|
| 40 | nn0abscl 14052 |
. . . . . . . . . . . . 13
| |
| 41 | nn0lt10b 11439 |
. . . . . . . . . . . . 13
| |
| 42 | 28, 40, 41 | 3syl 18 |
. . . . . . . . . . . 12
|
| 43 | 39, 42 | mpbid 222 |
. . . . . . . . . . 11
|
| 44 | 29, 43 | abs00d 14185 |
. . . . . . . . . 10
|
| 45 | 22, 26, 44 | subeq0d 10400 |
. . . . . . . . 9
|
| 46 | simplr 792 |
. . . . . . . . 9
| |
| 47 | 45, 46 | eqeltrrd 2702 |
. . . . . . . 8
|
| 48 | 47 | ex 450 |
. . . . . . 7
|
| 49 | 48 | ssrdv 3609 |
. . . . . 6
|
| 50 | eleq2 2690 |
. . . . . . . 8
| |
| 51 | sseq1 3626 |
. . . . . . . 8
| |
| 52 | 50, 51 | anbi12d 747 |
. . . . . . 7
|
| 53 | 52 | rspcev 3309 |
. . . . . 6
|
| 54 | 17, 21, 49, 53 | syl12anc 1324 |
. . . . 5
|
| 55 | 54 | ralrimiva 2966 |
. . . 4
|
| 56 | resttop 20964 |
. . . . . 6
| |
| 57 | 13, 14, 56 | mp2an 708 |
. . . . 5
|
| 58 | eltop2 20779 |
. . . . 5
| |
| 59 | 57, 58 | ax-mp 5 |
. . . 4
|
| 60 | 55, 59 | sylibr 224 |
. . 3
|
| 61 | 60 | ssriv 3607 |
. 2
|
| 62 | 1, 61 | eqssi 3619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-rest 16083 df-topn 16084 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 |
| This theorem is referenced by: sszcld 22620 |
| Copyright terms: Public domain | W3C validator |