Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cassini.c
Go to the documentation of this file.
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun ([email protected])
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * ([email protected]) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27  * load balancing (non-VLAN mode)
28  * batching of multiple packets
29  * multiple CPU dispatching
30  * page-based RX descriptor engine with separate completion rings
31  * Gigabit support (GMII and PCS interface)
32  * MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  * -- driver allocates pages at a time and keeps reference counts
37  * on them.
38  * -- the upper protocol layers assume that the header is in the skb
39  * itself. as a result, cassini will copy a small amount (64 bytes)
40  * to make them happy.
41  * -- driver appends the rest of the data pages as frags to skbuffs
42  * and increments the reference count
43  * -- on page reclamation, the driver swaps the page with a spare page.
44  * if that page is still in use, it frees its reference to that page,
45  * and allocates a new page for use. otherwise, it just recycles the
46  * the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  * as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86 
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98 
99 #include <net/checksum.h>
100 
101 #include <linux/atomic.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105 
106 #define cas_page_map(x) kmap_atomic((x))
107 #define cas_page_unmap(x) kunmap_atomic((x))
108 #define CAS_NCPUS num_online_cpus()
109 
110 #define cas_skb_release(x) netif_rx(x)
111 
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
116 
117 #include "cassini.h"
118 
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
123 
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125  * also, we need to make cp->lock finer-grained.
126  */
127 #undef USE_PCI_INTB
128 #undef USE_PCI_INTC
129 #undef USE_PCI_INTD
130 #undef USE_QOS
131 
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
133 
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
140 
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
144 
145 #define CAS_DEF_MSG_ENABLE \
146  (NETIF_MSG_DRV | \
147  NETIF_MSG_PROBE | \
148  NETIF_MSG_LINK | \
149  NETIF_MSG_TIMER | \
150  NETIF_MSG_IFDOWN | \
151  NETIF_MSG_IFUP | \
152  NETIF_MSG_RX_ERR | \
153  NETIF_MSG_TX_ERR)
154 
155 /* length of time before we decide the hardware is borked,
156  * and dev->tx_timeout() should be called to fix the problem
157  */
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
161 
162 /* timeout values for state changing. these specify the number
163  * of 10us delays to be used before giving up.
164  */
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
167 
168 /* specify a minimum frame size to deal with some fifo issues
169  * max mtu == 2 * page size - ethernet header - 64 - swivel =
170  * 2 * page_size - 0x50
171  */
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
176 
177 #if 1
178 /*
179  * Eliminate these and use separate atomic counters for each, to
180  * avoid a race condition.
181  */
182 #else
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
186 #endif
187 
188 static char version[] __devinitdata =
190 
191 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
193 
194 MODULE_AUTHOR("Adrian Sun ([email protected])");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
202 
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /*
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215 
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222 
223 
224 
225 static u16 link_modes[] __devinitdata = {
226  BMCR_ANENABLE, /* 0 : autoneg */
227  0, /* 1 : 10bt half duplex */
228  BMCR_SPEED100, /* 2 : 100bt half duplex */
229  BMCR_FULLDPLX, /* 3 : 10bt full duplex */
230  BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
231  CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
232 };
233 
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
236  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239  { 0, }
240 };
241 
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243 
244 static void cas_set_link_modes(struct cas *cp);
245 
246 static inline void cas_lock_tx(struct cas *cp)
247 {
248  int i;
249 
250  for (i = 0; i < N_TX_RINGS; i++)
251  spin_lock(&cp->tx_lock[i]);
252 }
253 
254 static inline void cas_lock_all(struct cas *cp)
255 {
256  spin_lock_irq(&cp->lock);
257  cas_lock_tx(cp);
258 }
259 
260 /* WTZ: QA was finding deadlock problems with the previous
261  * versions after long test runs with multiple cards per machine.
262  * See if replacing cas_lock_all with safer versions helps. The
263  * symptoms QA is reporting match those we'd expect if interrupts
264  * aren't being properly restored, and we fixed a previous deadlock
265  * with similar symptoms by using save/restore versions in other
266  * places.
267  */
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270  struct cas *xxxcp = (cp); \
271  spin_lock_irqsave(&xxxcp->lock, flags); \
272  cas_lock_tx(xxxcp); \
273 } while (0)
274 
275 static inline void cas_unlock_tx(struct cas *cp)
276 {
277  int i;
278 
279  for (i = N_TX_RINGS; i > 0; i--)
280  spin_unlock(&cp->tx_lock[i - 1]);
281 }
282 
283 static inline void cas_unlock_all(struct cas *cp)
284 {
285  cas_unlock_tx(cp);
286  spin_unlock_irq(&cp->lock);
287 }
288 
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291  struct cas *xxxcp = (cp); \
292  cas_unlock_tx(xxxcp); \
293  spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
295 
296 static void cas_disable_irq(struct cas *cp, const int ring)
297 {
298  /* Make sure we won't get any more interrupts */
299  if (ring == 0) {
300  writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301  return;
302  }
303 
304  /* disable completion interrupts and selectively mask */
305  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306  switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309  case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312  case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315  case 3:
316 #endif
318  cp->regs + REG_PLUS_INTRN_MASK(ring));
319  break;
320 #endif
321  default:
323  REG_PLUS_INTRN_MASK(ring));
324  break;
325  }
326  }
327 }
328 
329 static inline void cas_mask_intr(struct cas *cp)
330 {
331  int i;
332 
333  for (i = 0; i < N_RX_COMP_RINGS; i++)
334  cas_disable_irq(cp, i);
335 }
336 
337 static void cas_enable_irq(struct cas *cp, const int ring)
338 {
339  if (ring == 0) { /* all but TX_DONE */
341  return;
342  }
343 
344  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345  switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348  case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351  case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354  case 3:
355 #endif
357  REG_PLUS_INTRN_MASK(ring));
358  break;
359 #endif
360  default:
361  break;
362  }
363  }
364 }
365 
366 static inline void cas_unmask_intr(struct cas *cp)
367 {
368  int i;
369 
370  for (i = 0; i < N_RX_COMP_RINGS; i++)
371  cas_enable_irq(cp, i);
372 }
373 
374 static inline void cas_entropy_gather(struct cas *cp)
375 {
376 #ifdef USE_ENTROPY_DEV
377  if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378  return;
379 
380  batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381  readl(cp->regs + REG_ENTROPY_IV),
382  sizeof(uint64_t)*8);
383 #endif
384 }
385 
386 static inline void cas_entropy_reset(struct cas *cp)
387 {
388 #ifdef USE_ENTROPY_DEV
389  if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390  return;
391 
393  cp->regs + REG_BIM_LOCAL_DEV_EN);
395  writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396 
397  /* if we read back 0x0, we don't have an entropy device */
398  if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
400 #endif
401 }
402 
403 /* access to the phy. the following assumes that we've initialized the MIF to
404  * be in frame rather than bit-bang mode
405  */
406 static u16 cas_phy_read(struct cas *cp, int reg)
407 {
408  u32 cmd;
409  int limit = STOP_TRIES_PHY;
410 
412  cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413  cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
415  writel(cmd, cp->regs + REG_MIF_FRAME);
416 
417  /* poll for completion */
418  while (limit-- > 0) {
419  udelay(10);
420  cmd = readl(cp->regs + REG_MIF_FRAME);
421  if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422  return cmd & MIF_FRAME_DATA_MASK;
423  }
424  return 0xFFFF; /* -1 */
425 }
426 
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 {
429  int limit = STOP_TRIES_PHY;
430  u32 cmd;
431 
433  cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434  cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
436  cmd |= val & MIF_FRAME_DATA_MASK;
437  writel(cmd, cp->regs + REG_MIF_FRAME);
438 
439  /* poll for completion */
440  while (limit-- > 0) {
441  udelay(10);
442  cmd = readl(cp->regs + REG_MIF_FRAME);
443  if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444  return 0;
445  }
446  return -1;
447 }
448 
449 static void cas_phy_powerup(struct cas *cp)
450 {
451  u16 ctl = cas_phy_read(cp, MII_BMCR);
452 
453  if ((ctl & BMCR_PDOWN) == 0)
454  return;
455  ctl &= ~BMCR_PDOWN;
456  cas_phy_write(cp, MII_BMCR, ctl);
457 }
458 
459 static void cas_phy_powerdown(struct cas *cp)
460 {
461  u16 ctl = cas_phy_read(cp, MII_BMCR);
462 
463  if (ctl & BMCR_PDOWN)
464  return;
465  ctl |= BMCR_PDOWN;
466  cas_phy_write(cp, MII_BMCR, ctl);
467 }
468 
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 {
472  pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474  __free_pages(page->buffer, cp->page_order);
475  kfree(page);
476  return 0;
477 }
478 
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
486 
487 /* local page allocation routines for the receive buffers. jumbo pages
488  * require at least 8K contiguous and 8K aligned buffers.
489  */
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 {
492  cas_page_t *page;
493 
494  page = kmalloc(sizeof(cas_page_t), flags);
495  if (!page)
496  return NULL;
497 
498  INIT_LIST_HEAD(&page->list);
499  RX_USED_SET(page, 0);
500  page->buffer = alloc_pages(flags, cp->page_order);
501  if (!page->buffer)
502  goto page_err;
503  page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
505  return page;
506 
507 page_err:
508  kfree(page);
509  return NULL;
510 }
511 
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
514 {
515  spin_lock(&cp->rx_inuse_lock);
516  INIT_LIST_HEAD(&cp->rx_inuse_list);
517  spin_unlock(&cp->rx_inuse_lock);
518 
519  spin_lock(&cp->rx_spare_lock);
520  INIT_LIST_HEAD(&cp->rx_spare_list);
522  spin_unlock(&cp->rx_spare_lock);
523 }
524 
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
527 {
528  struct list_head list, *elem, *tmp;
529 
530  /* free spare buffers */
531  INIT_LIST_HEAD(&list);
532  spin_lock(&cp->rx_spare_lock);
533  list_splice_init(&cp->rx_spare_list, &list);
534  spin_unlock(&cp->rx_spare_lock);
535  list_for_each_safe(elem, tmp, &list) {
536  cas_page_free(cp, list_entry(elem, cas_page_t, list));
537  }
538 
539  INIT_LIST_HEAD(&list);
540 #if 1
541  /*
542  * Looks like Adrian had protected this with a different
543  * lock than used everywhere else to manipulate this list.
544  */
545  spin_lock(&cp->rx_inuse_lock);
546  list_splice_init(&cp->rx_inuse_list, &list);
547  spin_unlock(&cp->rx_inuse_lock);
548 #else
549  spin_lock(&cp->rx_spare_lock);
550  list_splice_init(&cp->rx_inuse_list, &list);
551  spin_unlock(&cp->rx_spare_lock);
552 #endif
553  list_for_each_safe(elem, tmp, &list) {
554  cas_page_free(cp, list_entry(elem, cas_page_t, list));
555  }
556 }
557 
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 {
561  struct list_head list, *elem, *tmp;
562  int needed, i;
563 
564  /* check inuse list. if we don't need any more free buffers,
565  * just free it
566  */
567 
568  /* make a local copy of the list */
569  INIT_LIST_HEAD(&list);
570  spin_lock(&cp->rx_inuse_lock);
571  list_splice_init(&cp->rx_inuse_list, &list);
572  spin_unlock(&cp->rx_inuse_lock);
573 
574  list_for_each_safe(elem, tmp, &list) {
576 
577  /*
578  * With the lockless pagecache, cassini buffering scheme gets
579  * slightly less accurate: we might find that a page has an
580  * elevated reference count here, due to a speculative ref,
581  * and skip it as in-use. Ideally we would be able to reclaim
582  * it. However this would be such a rare case, it doesn't
583  * matter too much as we should pick it up the next time round.
584  *
585  * Importantly, if we find that the page has a refcount of 1
586  * here (our refcount), then we know it is definitely not inuse
587  * so we can reuse it.
588  */
589  if (page_count(page->buffer) > 1)
590  continue;
591 
592  list_del(elem);
593  spin_lock(&cp->rx_spare_lock);
594  if (cp->rx_spares_needed > 0) {
595  list_add(elem, &cp->rx_spare_list);
596  cp->rx_spares_needed--;
597  spin_unlock(&cp->rx_spare_lock);
598  } else {
599  spin_unlock(&cp->rx_spare_lock);
600  cas_page_free(cp, page);
601  }
602  }
603 
604  /* put any inuse buffers back on the list */
605  if (!list_empty(&list)) {
606  spin_lock(&cp->rx_inuse_lock);
607  list_splice(&list, &cp->rx_inuse_list);
608  spin_unlock(&cp->rx_inuse_lock);
609  }
610 
611  spin_lock(&cp->rx_spare_lock);
612  needed = cp->rx_spares_needed;
613  spin_unlock(&cp->rx_spare_lock);
614  if (!needed)
615  return;
616 
617  /* we still need spares, so try to allocate some */
618  INIT_LIST_HEAD(&list);
619  i = 0;
620  while (i < needed) {
621  cas_page_t *spare = cas_page_alloc(cp, flags);
622  if (!spare)
623  break;
624  list_add(&spare->list, &list);
625  i++;
626  }
627 
628  spin_lock(&cp->rx_spare_lock);
629  list_splice(&list, &cp->rx_spare_list);
630  cp->rx_spares_needed -= i;
631  spin_unlock(&cp->rx_spare_lock);
632 }
633 
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 {
637  struct list_head *entry;
638  int recover;
639 
640  spin_lock(&cp->rx_spare_lock);
641  if (list_empty(&cp->rx_spare_list)) {
642  /* try to do a quick recovery */
643  spin_unlock(&cp->rx_spare_lock);
644  cas_spare_recover(cp, GFP_ATOMIC);
645  spin_lock(&cp->rx_spare_lock);
646  if (list_empty(&cp->rx_spare_list)) {
647  netif_err(cp, rx_err, cp->dev,
648  "no spare buffers available\n");
649  spin_unlock(&cp->rx_spare_lock);
650  return NULL;
651  }
652  }
653 
654  entry = cp->rx_spare_list.next;
655  list_del(entry);
656  recover = ++cp->rx_spares_needed;
657  spin_unlock(&cp->rx_spare_lock);
658 
659  /* trigger the timer to do the recovery */
660  if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
665 #else
666  atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
668 #endif
669  }
670  return list_entry(entry, cas_page_t, list);
671 }
672 
673 
674 static void cas_mif_poll(struct cas *cp, const int enable)
675 {
676  u32 cfg;
677 
678  cfg = readl(cp->regs + REG_MIF_CFG);
679  cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680 
681  if (cp->phy_type & CAS_PHY_MII_MDIO1)
682  cfg |= MIF_CFG_PHY_SELECT;
683 
684  /* poll and interrupt on link status change. */
685  if (enable) {
686  cfg |= MIF_CFG_POLL_EN;
687  cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688  cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689  }
690  writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691  cp->regs + REG_MIF_MASK);
692  writel(cfg, cp->regs + REG_MIF_CFG);
693 }
694 
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
697 {
698  u16 ctl;
699 #if 1
700  int lcntl;
701  int changed = 0;
702  int oldstate = cp->lstate;
703  int link_was_not_down = !(oldstate == link_down);
704 #endif
705  /* Setup link parameters */
706  if (!ep)
707  goto start_aneg;
708  lcntl = cp->link_cntl;
709  if (ep->autoneg == AUTONEG_ENABLE)
710  cp->link_cntl = BMCR_ANENABLE;
711  else {
712  u32 speed = ethtool_cmd_speed(ep);
713  cp->link_cntl = 0;
714  if (speed == SPEED_100)
715  cp->link_cntl |= BMCR_SPEED100;
716  else if (speed == SPEED_1000)
718  if (ep->duplex == DUPLEX_FULL)
719  cp->link_cntl |= BMCR_FULLDPLX;
720  }
721 #if 1
722  changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725  if (cp->lstate == link_up) {
726  netdev_info(cp->dev, "PCS link down\n");
727  } else {
728  if (changed) {
729  netdev_info(cp->dev, "link configuration changed\n");
730  }
731  }
732  cp->lstate = link_down;
734  if (!cp->hw_running)
735  return;
736 #if 1
737  /*
738  * WTZ: If the old state was link_up, we turn off the carrier
739  * to replicate everything we do elsewhere on a link-down
740  * event when we were already in a link-up state..
741  */
742  if (oldstate == link_up)
743  netif_carrier_off(cp->dev);
744  if (changed && link_was_not_down) {
745  /*
746  * WTZ: This branch will simply schedule a full reset after
747  * we explicitly changed link modes in an ioctl. See if this
748  * fixes the link-problems we were having for forced mode.
749  */
753  cp->timer_ticks = 0;
754  mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755  return;
756  }
757 #endif
758  if (cp->phy_type & CAS_PHY_SERDES) {
759  u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760 
761  if (cp->link_cntl & BMCR_ANENABLE) {
763  cp->lstate = link_aneg;
764  } else {
765  if (cp->link_cntl & BMCR_FULLDPLX)
766  val |= PCS_MII_CTRL_DUPLEX;
767  val &= ~PCS_MII_AUTONEG_EN;
768  cp->lstate = link_force_ok;
769  }
771  writel(val, cp->regs + REG_PCS_MII_CTRL);
772 
773  } else {
774  cas_mif_poll(cp, 0);
775  ctl = cas_phy_read(cp, MII_BMCR);
776  ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
778  ctl |= cp->link_cntl;
779  if (ctl & BMCR_ANENABLE) {
780  ctl |= BMCR_ANRESTART;
781  cp->lstate = link_aneg;
782  } else {
783  cp->lstate = link_force_ok;
784  }
786  cas_phy_write(cp, MII_BMCR, ctl);
787  cas_mif_poll(cp, 1);
788  }
789 
790  cp->timer_ticks = 0;
791  mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793 
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797  int limit = STOP_TRIES_PHY;
798  u16 val;
799 
800  cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801  udelay(100);
802  while (--limit) {
803  val = cas_phy_read(cp, MII_BMCR);
804  if ((val & BMCR_RESET) == 0)
805  break;
806  udelay(10);
807  }
808  return limit <= 0;
809 }
810 
811 static int cas_saturn_firmware_init(struct cas *cp)
812 {
813  const struct firmware *fw;
814  const char fw_name[] = "sun/cassini.bin";
815  int err;
816 
817  if (PHY_NS_DP83065 != cp->phy_id)
818  return 0;
819 
820  err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821  if (err) {
822  pr_err("Failed to load firmware \"%s\"\n",
823  fw_name);
824  return err;
825  }
826  if (fw->size < 2) {
827  pr_err("bogus length %zu in \"%s\"\n",
828  fw->size, fw_name);
829  err = -EINVAL;
830  goto out;
831  }
832  cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
833  cp->fw_size = fw->size - 2;
834  cp->fw_data = vmalloc(cp->fw_size);
835  if (!cp->fw_data) {
836  err = -ENOMEM;
837  goto out;
838  }
839  memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
840 out:
841  release_firmware(fw);
842  return err;
843 }
844 
845 static void cas_saturn_firmware_load(struct cas *cp)
846 {
847  int i;
848 
849  cas_phy_powerdown(cp);
850 
851  /* expanded memory access mode */
852  cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853 
854  /* pointer configuration for new firmware */
855  cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
856  cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
857  cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
858  cas_phy_write(cp, DP83065_MII_REGD, 0x82);
859  cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
860  cas_phy_write(cp, DP83065_MII_REGD, 0x0);
861  cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
862  cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863 
864  /* download new firmware */
865  cas_phy_write(cp, DP83065_MII_MEM, 0x1);
866  cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
867  for (i = 0; i < cp->fw_size; i++)
868  cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869 
870  /* enable firmware */
871  cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
872  cas_phy_write(cp, DP83065_MII_REGD, 0x1);
873 }
874 
875 
876 /* phy initialization */
877 static void cas_phy_init(struct cas *cp)
878 {
879  u16 val;
880 
881  /* if we're in MII/GMII mode, set up phy */
882  if (CAS_PHY_MII(cp->phy_type)) {
885 
886  cas_mif_poll(cp, 0);
887  cas_reset_mii_phy(cp); /* take out of isolate mode */
888 
889  if (PHY_LUCENT_B0 == cp->phy_id) {
890  /* workaround link up/down issue with lucent */
891  cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
892  cas_phy_write(cp, MII_BMCR, 0x00f1);
893  cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894 
895  } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
896  /* workarounds for broadcom phy */
897  cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
898  cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
899  cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
900  cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
901  cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
902  cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903  cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
904  cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905  cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
906  cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
907  cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908 
909  } else if (PHY_BROADCOM_5411 == cp->phy_id) {
910  val = cas_phy_read(cp, BROADCOM_MII_REG4);
911  val = cas_phy_read(cp, BROADCOM_MII_REG4);
912  if (val & 0x0080) {
913  /* link workaround */
914  cas_phy_write(cp, BROADCOM_MII_REG4,
915  val & ~0x0080);
916  }
917 
918  } else if (cp->cas_flags & CAS_FLAG_SATURN) {
920  SATURN_PCFG_FSI : 0x0,
921  cp->regs + REG_SATURN_PCFG);
922 
923  /* load firmware to address 10Mbps auto-negotiation
924  * issue. NOTE: this will need to be changed if the
925  * default firmware gets fixed.
926  */
927  if (PHY_NS_DP83065 == cp->phy_id) {
928  cas_saturn_firmware_load(cp);
929  }
930  cas_phy_powerup(cp);
931  }
932 
933  /* advertise capabilities */
934  val = cas_phy_read(cp, MII_BMCR);
935  val &= ~BMCR_ANENABLE;
936  cas_phy_write(cp, MII_BMCR, val);
937  udelay(10);
938 
939  cas_phy_write(cp, MII_ADVERTISE,
940  cas_phy_read(cp, MII_ADVERTISE) |
945 
946  if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
947  /* make sure that we don't advertise half
948  * duplex to avoid a chip issue
949  */
950  val = cas_phy_read(cp, CAS_MII_1000_CTRL);
951  val &= ~CAS_ADVERTISE_1000HALF;
952  val |= CAS_ADVERTISE_1000FULL;
953  cas_phy_write(cp, CAS_MII_1000_CTRL, val);
954  }
955 
956  } else {
957  /* reset pcs for serdes */
958  u32 val;
959  int limit;
960 
963 
964  /* enable serdes pins on saturn */
965  if (cp->cas_flags & CAS_FLAG_SATURN)
966  writel(0, cp->regs + REG_SATURN_PCFG);
967 
968  /* Reset PCS unit. */
969  val = readl(cp->regs + REG_PCS_MII_CTRL);
970  val |= PCS_MII_RESET;
971  writel(val, cp->regs + REG_PCS_MII_CTRL);
972 
973  limit = STOP_TRIES;
974  while (--limit > 0) {
975  udelay(10);
976  if ((readl(cp->regs + REG_PCS_MII_CTRL) &
977  PCS_MII_RESET) == 0)
978  break;
979  }
980  if (limit <= 0)
981  netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
983 
984  /* Make sure PCS is disabled while changing advertisement
985  * configuration.
986  */
987  writel(0x0, cp->regs + REG_PCS_CFG);
988 
989  /* Advertise all capabilities except half-duplex. */
990  val = readl(cp->regs + REG_PCS_MII_ADVERT);
991  val &= ~PCS_MII_ADVERT_HD;
994  writel(val, cp->regs + REG_PCS_MII_ADVERT);
995 
996  /* enable PCS */
998 
999  /* pcs workaround: enable sync detect */
1001  cp->regs + REG_PCS_SERDES_CTRL);
1002  }
1003 }
1004 
1005 
1006 static int cas_pcs_link_check(struct cas *cp)
1007 {
1008  u32 stat, state_machine;
1009  int retval = 0;
1010 
1011  /* The link status bit latches on zero, so you must
1012  * read it twice in such a case to see a transition
1013  * to the link being up.
1014  */
1015  stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016  if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1017  stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018 
1019  /* The remote-fault indication is only valid
1020  * when autoneg has completed.
1021  */
1022  if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1025  netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026 
1027  /* work around link detection issue by querying the PCS state
1028  * machine directly.
1029  */
1030  state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1031  if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1032  stat &= ~PCS_MII_STATUS_LINK_STATUS;
1033  } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1035  }
1036 
1037  if (stat & PCS_MII_STATUS_LINK_STATUS) {
1038  if (cp->lstate != link_up) {
1039  if (cp->opened) {
1040  cp->lstate = link_up;
1042 
1043  cas_set_link_modes(cp);
1044  netif_carrier_on(cp->dev);
1045  }
1046  }
1047  } else if (cp->lstate == link_up) {
1048  cp->lstate = link_down;
1049  if (link_transition_timeout != 0 &&
1052  /*
1053  * force a reset, as a workaround for the
1054  * link-failure problem. May want to move this to a
1055  * point a bit earlier in the sequence. If we had
1056  * generated a reset a short time ago, we'll wait for
1057  * the link timer to check the status until a
1058  * timer expires (link_transistion_jiffies_valid is
1059  * true when the timer is running.) Instead of using
1060  * a system timer, we just do a check whenever the
1061  * link timer is running - this clears the flag after
1062  * a suitable delay.
1063  */
1064  retval = 1;
1068  } else {
1070  }
1071  netif_carrier_off(cp->dev);
1072  if (cp->opened)
1073  netif_info(cp, link, cp->dev, "PCS link down\n");
1074 
1075  /* Cassini only: if you force a mode, there can be
1076  * sync problems on link down. to fix that, the following
1077  * things need to be checked:
1078  * 1) read serialink state register
1079  * 2) read pcs status register to verify link down.
1080  * 3) if link down and serial link == 0x03, then you need
1081  * to global reset the chip.
1082  */
1083  if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1084  /* should check to see if we're in a forced mode */
1085  stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1086  if (stat == 0x03)
1087  return 1;
1088  }
1089  } else if (cp->lstate == link_down) {
1090  if (link_transition_timeout != 0 &&
1093  /* force a reset, as a workaround for the
1094  * link-failure problem. May want to move
1095  * this to a point a bit earlier in the
1096  * sequence.
1097  */
1098  retval = 1;
1102  } else {
1104  }
1105  }
1106 
1107  return retval;
1108 }
1109 
1110 static int cas_pcs_interrupt(struct net_device *dev,
1111  struct cas *cp, u32 status)
1112 {
1113  u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114 
1115  if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116  return 0;
1117  return cas_pcs_link_check(cp);
1118 }
1119 
1120 static int cas_txmac_interrupt(struct net_device *dev,
1121  struct cas *cp, u32 status)
1122 {
1123  u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124 
1125  if (!txmac_stat)
1126  return 0;
1127 
1128  netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1129  "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130 
1131  /* Defer timer expiration is quite normal,
1132  * don't even log the event.
1133  */
1134  if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1135  !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1136  return 0;
1137 
1138  spin_lock(&cp->stat_lock[0]);
1139  if (txmac_stat & MAC_TX_UNDERRUN) {
1140  netdev_err(dev, "TX MAC xmit underrun\n");
1141  cp->net_stats[0].tx_fifo_errors++;
1142  }
1143 
1144  if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1145  netdev_err(dev, "TX MAC max packet size error\n");
1146  cp->net_stats[0].tx_errors++;
1147  }
1148 
1149  /* The rest are all cases of one of the 16-bit TX
1150  * counters expiring.
1151  */
1152  if (txmac_stat & MAC_TX_COLL_NORMAL)
1153  cp->net_stats[0].collisions += 0x10000;
1154 
1155  if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156  cp->net_stats[0].tx_aborted_errors += 0x10000;
1157  cp->net_stats[0].collisions += 0x10000;
1158  }
1159 
1160  if (txmac_stat & MAC_TX_COLL_LATE) {
1161  cp->net_stats[0].tx_aborted_errors += 0x10000;
1162  cp->net_stats[0].collisions += 0x10000;
1163  }
1164  spin_unlock(&cp->stat_lock[0]);
1165 
1166  /* We do not keep track of MAC_TX_COLL_FIRST and
1167  * MAC_TX_PEAK_ATTEMPTS events.
1168  */
1169  return 0;
1170 }
1171 
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 {
1174  cas_hp_inst_t *inst;
1175  u32 val;
1176  int i;
1177 
1178  i = 0;
1179  while ((inst = firmware) && inst->note) {
1180  writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 
1182  val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183  val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184  writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 
1186  val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187  val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188  val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189  val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190  val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191  val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192  val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1194 
1195  val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196  val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197  val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198  val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1200  ++firmware;
1201  ++i;
1202  }
1203 }
1204 
1205 static void cas_init_rx_dma(struct cas *cp)
1206 {
1207  u64 desc_dma = cp->block_dvma;
1208  u32 val;
1209  int i, size;
1210 
1211  /* rx free descriptors */
1212  val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213  val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214  val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215  if ((N_RX_DESC_RINGS > 1) &&
1216  (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1217  val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218  writel(val, cp->regs + REG_RX_CFG);
1219 
1220  val = (unsigned long) cp->init_rxds[0] -
1221  (unsigned long) cp->init_block;
1222  writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223  writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224  writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 
1226  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227  /* rx desc 2 is for IPSEC packets. however,
1228  * we don't it that for that purpose.
1229  */
1230  val = (unsigned long) cp->init_rxds[1] -
1231  (unsigned long) cp->init_block;
1232  writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233  writel((desc_dma + val) & 0xffffffff, cp->regs +
1235  writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1237  }
1238 
1239  /* rx completion registers */
1240  val = (unsigned long) cp->init_rxcs[0] -
1241  (unsigned long) cp->init_block;
1242  writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243  writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 
1245  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246  /* rx comp 2-4 */
1247  for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248  val = (unsigned long) cp->init_rxcs[i] -
1249  (unsigned long) cp->init_block;
1250  writel((desc_dma + val) >> 32, cp->regs +
1251  REG_PLUS_RX_CBN_HI(i));
1252  writel((desc_dma + val) & 0xffffffff, cp->regs +
1253  REG_PLUS_RX_CBN_LOW(i));
1254  }
1255  }
1256 
1257  /* read selective clear regs to prevent spurious interrupts
1258  * on reset because complete == kick.
1259  * selective clear set up to prevent interrupts on resets
1260  */
1263  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264  for (i = 1; i < N_RX_COMP_RINGS; i++)
1266 
1267  /* 2 is different from 3 and 4 */
1268  if (N_RX_COMP_RINGS > 1)
1270  cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 
1272  for (i = 2; i < N_RX_COMP_RINGS; i++)
1274  cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275  }
1276 
1277  /* set up pause thresholds */
1278  val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1280  val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1282  writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 
1284  /* zero out dma reassembly buffers */
1285  for (i = 0; i < 64; i++) {
1286  writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287  writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288  writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289  writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290  }
1291 
1292  /* make sure address register is 0 for normal operation */
1293  writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294  writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 
1296  /* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298  val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299  val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300  writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302  writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1304 
1305  /* interrupt generation as a function of low water marks for
1306  * free desc and completion entries. these are used to trigger
1307  * housekeeping for rx descs. we don't use the free interrupt
1308  * as it's not very useful
1309  */
1310  /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311  val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312  writel(val, cp->regs + REG_RX_AE_THRESH);
1313  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314  val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315  writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316  }
1317 
1318  /* Random early detect registers. useful for congestion avoidance.
1319  * this should be tunable.
1320  */
1321  writel(0x0, cp->regs + REG_RX_RED);
1322 
1323  /* receive page sizes. default == 2K (0x800) */
1324  val = 0;
1325  if (cp->page_size == 0x1000)
1326  val = 0x1;
1327  else if (cp->page_size == 0x2000)
1328  val = 0x2;
1329  else if (cp->page_size == 0x4000)
1330  val = 0x3;
1331 
1332  /* round mtu + offset. constrain to page size. */
1333  size = cp->dev->mtu + 64;
1334  if (size > cp->page_size)
1335  size = cp->page_size;
1336 
1337  if (size <= 0x400)
1338  i = 0x0;
1339  else if (size <= 0x800)
1340  i = 0x1;
1341  else if (size <= 0x1000)
1342  i = 0x2;
1343  else
1344  i = 0x3;
1345 
1346  cp->mtu_stride = 1 << (i + 10);
1347  val = CAS_BASE(RX_PAGE_SIZE, val);
1348  val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349  val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350  val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351  writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 
1353  /* enable the header parser if desired */
1354  if (CAS_HP_FIRMWARE == cas_prog_null)
1355  return;
1356 
1357  val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1359  val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360  writel(val, cp->regs + REG_HP_CFG);
1361 }
1362 
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 {
1365  memset(rxc, 0, sizeof(*rxc));
1367 }
1368 
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370  * flipping is protected by the fact that the chip will not
1371  * hand back the same page index while it's being processed.
1372  */
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 {
1375  cas_page_t *page = cp->rx_pages[1][index];
1376  cas_page_t *new;
1377 
1378  if (page_count(page->buffer) == 1)
1379  return page;
1380 
1381  new = cas_page_dequeue(cp);
1382  if (new) {
1383  spin_lock(&cp->rx_inuse_lock);
1384  list_add(&page->list, &cp->rx_inuse_list);
1385  spin_unlock(&cp->rx_inuse_lock);
1386  }
1387  return new;
1388 }
1389 
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392  const int index)
1393 {
1394  cas_page_t **page0 = cp->rx_pages[0];
1395  cas_page_t **page1 = cp->rx_pages[1];
1396 
1397  /* swap if buffer is in use */
1398  if (page_count(page0[index]->buffer) > 1) {
1399  cas_page_t *new = cas_page_spare(cp, index);
1400  if (new) {
1401  page1[index] = page0[index];
1402  page0[index] = new;
1403  }
1404  }
1405  RX_USED_SET(page0[index], 0);
1406  return page0[index];
1407 }
1408 
1409 static void cas_clean_rxds(struct cas *cp)
1410 {
1411  /* only clean ring 0 as ring 1 is used for spare buffers */
1412  struct cas_rx_desc *rxd = cp->init_rxds[0];
1413  int i, size;
1414 
1415  /* release all rx flows */
1416  for (i = 0; i < N_RX_FLOWS; i++) {
1417  struct sk_buff *skb;
1418  while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419  cas_skb_release(skb);
1420  }
1421  }
1422 
1423  /* initialize descriptors */
1424  size = RX_DESC_RINGN_SIZE(0);
1425  for (i = 0; i < size; i++) {
1426  cas_page_t *page = cas_page_swap(cp, 0, i);
1427  rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428  rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429  CAS_BASE(RX_INDEX_RING, 0));
1430  }
1431 
1432  cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433  cp->rx_last[0] = 0;
1434  cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 }
1436 
1437 static void cas_clean_rxcs(struct cas *cp)
1438 {
1439  int i, j;
1440 
1441  /* take ownership of rx comp descriptors */
1442  memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443  memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444  for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445  struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446  for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447  cas_rxc_init(rxc + j);
1448  }
1449  }
1450 }
1451 
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454  * so we do the following.
1455  *
1456  * If any part of the reset goes wrong, we return 1 and that causes the
1457  * whole chip to be reset.
1458  */
1459 static int cas_rxmac_reset(struct cas *cp)
1460 {
1461  struct net_device *dev = cp->dev;
1462  int limit;
1463  u32 val;
1464 
1465  /* First, reset MAC RX. */
1467  for (limit = 0; limit < STOP_TRIES; limit++) {
1468  if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469  break;
1470  udelay(10);
1471  }
1472  if (limit == STOP_TRIES) {
1473  netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1474  return 1;
1475  }
1476 
1477  /* Second, disable RX DMA. */
1478  writel(0, cp->regs + REG_RX_CFG);
1479  for (limit = 0; limit < STOP_TRIES; limit++) {
1480  if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481  break;
1482  udelay(10);
1483  }
1484  if (limit == STOP_TRIES) {
1485  netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1486  return 1;
1487  }
1488 
1489  mdelay(5);
1490 
1491  /* Execute RX reset command. */
1493  for (limit = 0; limit < STOP_TRIES; limit++) {
1494  if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495  break;
1496  udelay(10);
1497  }
1498  if (limit == STOP_TRIES) {
1499  netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1500  return 1;
1501  }
1502 
1503  /* reset driver rx state */
1504  cas_clean_rxds(cp);
1505  cas_clean_rxcs(cp);
1506 
1507  /* Now, reprogram the rest of RX unit. */
1508  cas_init_rx_dma(cp);
1509 
1510  /* re-enable */
1511  val = readl(cp->regs + REG_RX_CFG);
1512  writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1514  val = readl(cp->regs + REG_MAC_RX_CFG);
1515  writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1516  return 0;
1517 }
1518 #endif
1519 
1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1521  u32 status)
1522 {
1523  u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1524 
1525  if (!stat)
1526  return 0;
1527 
1528  netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529 
1530  /* these are all rollovers */
1531  spin_lock(&cp->stat_lock[0]);
1532  if (stat & MAC_RX_ALIGN_ERR)
1533  cp->net_stats[0].rx_frame_errors += 0x10000;
1534 
1535  if (stat & MAC_RX_CRC_ERR)
1536  cp->net_stats[0].rx_crc_errors += 0x10000;
1537 
1538  if (stat & MAC_RX_LEN_ERR)
1539  cp->net_stats[0].rx_length_errors += 0x10000;
1540 
1541  if (stat & MAC_RX_OVERFLOW) {
1542  cp->net_stats[0].rx_over_errors++;
1543  cp->net_stats[0].rx_fifo_errors++;
1544  }
1545 
1546  /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1547  * events.
1548  */
1549  spin_unlock(&cp->stat_lock[0]);
1550  return 0;
1551 }
1552 
1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1554  u32 status)
1555 {
1556  u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1557 
1558  if (!stat)
1559  return 0;
1560 
1561  netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1562  "mac interrupt, stat: 0x%x\n", stat);
1563 
1564  /* This interrupt is just for pause frame and pause
1565  * tracking. It is useful for diagnostics and debug
1566  * but probably by default we will mask these events.
1567  */
1568  if (stat & MAC_CTRL_PAUSE_STATE)
1569  cp->pause_entered++;
1570 
1571  if (stat & MAC_CTRL_PAUSE_RECEIVED)
1572  cp->pause_last_time_recvd = (stat >> 16);
1573 
1574  return 0;
1575 }
1576 
1577 
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas *cp)
1580 {
1581  u16 val;
1582 
1583  switch (cp->lstate) {
1584  case link_force_ret:
1585  netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1586  cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1587  cp->timer_ticks = 5;
1588  cp->lstate = link_force_ok;
1590  break;
1591 
1592  case link_aneg:
1593  val = cas_phy_read(cp, MII_BMCR);
1594 
1595  /* Try forced modes. we try things in the following order:
1596  * 1000 full -> 100 full/half -> 10 half
1597  */
1598  val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1599  val |= BMCR_FULLDPLX;
1600  val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1602  cas_phy_write(cp, MII_BMCR, val);
1603  cp->timer_ticks = 5;
1604  cp->lstate = link_force_try;
1606  break;
1607 
1608  case link_force_try:
1609  /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610  val = cas_phy_read(cp, MII_BMCR);
1611  cp->timer_ticks = 5;
1612  if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1613  val &= ~CAS_BMCR_SPEED1000;
1614  val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1615  cas_phy_write(cp, MII_BMCR, val);
1616  break;
1617  }
1618 
1619  if (val & BMCR_SPEED100) {
1620  if (val & BMCR_FULLDPLX) /* fd failed */
1621  val &= ~BMCR_FULLDPLX;
1622  else { /* 100Mbps failed */
1623  val &= ~BMCR_SPEED100;
1624  }
1625  cas_phy_write(cp, MII_BMCR, val);
1626  break;
1627  }
1628  default:
1629  break;
1630  }
1631  return 0;
1632 }
1633 
1634 
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1637 {
1638  int restart;
1639 
1640  if (bmsr & BMSR_LSTATUS) {
1641  /* Ok, here we got a link. If we had it due to a forced
1642  * fallback, and we were configured for autoneg, we
1643  * retry a short autoneg pass. If you know your hub is
1644  * broken, use ethtool ;)
1645  */
1646  if ((cp->lstate == link_force_try) &&
1647  (cp->link_cntl & BMCR_ANENABLE)) {
1648  cp->lstate = link_force_ret;
1650  cas_mif_poll(cp, 0);
1651  cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1652  cp->timer_ticks = 5;
1653  if (cp->opened)
1654  netif_info(cp, link, cp->dev,
1655  "Got link after fallback, retrying autoneg once...\n");
1656  cas_phy_write(cp, MII_BMCR,
1657  cp->link_fcntl | BMCR_ANENABLE |
1658  BMCR_ANRESTART);
1659  cas_mif_poll(cp, 1);
1660 
1661  } else if (cp->lstate != link_up) {
1662  cp->lstate = link_up;
1664 
1665  if (cp->opened) {
1666  cas_set_link_modes(cp);
1667  netif_carrier_on(cp->dev);
1668  }
1669  }
1670  return 0;
1671  }
1672 
1673  /* link not up. if the link was previously up, we restart the
1674  * whole process
1675  */
1676  restart = 0;
1677  if (cp->lstate == link_up) {
1678  cp->lstate = link_down;
1680 
1681  netif_carrier_off(cp->dev);
1682  if (cp->opened)
1683  netif_info(cp, link, cp->dev, "Link down\n");
1684  restart = 1;
1685 
1686  } else if (++cp->timer_ticks > 10)
1687  cas_mdio_link_not_up(cp);
1688 
1689  return restart;
1690 }
1691 
1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1693  u32 status)
1694 {
1695  u32 stat = readl(cp->regs + REG_MIF_STATUS);
1696  u16 bmsr;
1697 
1698  /* check for a link change */
1699  if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1700  return 0;
1701 
1702  bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1703  return cas_mii_link_check(cp, bmsr);
1704 }
1705 
1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1707  u32 status)
1708 {
1709  u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1710 
1711  if (!stat)
1712  return 0;
1713 
1714  netdev_err(dev, "PCI error [%04x:%04x]",
1715  stat, readl(cp->regs + REG_BIM_DIAG));
1716 
1717  /* cassini+ has this reserved */
1718  if ((stat & PCI_ERR_BADACK) &&
1719  ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1720  pr_cont(" <No ACK64# during ABS64 cycle>");
1721 
1722  if (stat & PCI_ERR_DTRTO)
1723  pr_cont(" <Delayed transaction timeout>");
1724  if (stat & PCI_ERR_OTHER)
1725  pr_cont(" <other>");
1726  if (stat & PCI_ERR_BIM_DMA_WRITE)
1727  pr_cont(" <BIM DMA 0 write req>");
1728  if (stat & PCI_ERR_BIM_DMA_READ)
1729  pr_cont(" <BIM DMA 0 read req>");
1730  pr_cont("\n");
1731 
1732  if (stat & PCI_ERR_OTHER) {
1733  u16 cfg;
1734 
1735  /* Interrogate PCI config space for the
1736  * true cause.
1737  */
1738  pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1739  netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1740  if (cfg & PCI_STATUS_PARITY)
1741  netdev_err(dev, "PCI parity error detected\n");
1742  if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1743  netdev_err(dev, "PCI target abort\n");
1744  if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1745  netdev_err(dev, "PCI master acks target abort\n");
1746  if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1747  netdev_err(dev, "PCI master abort\n");
1748  if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1749  netdev_err(dev, "PCI system error SERR#\n");
1750  if (cfg & PCI_STATUS_DETECTED_PARITY)
1751  netdev_err(dev, "PCI parity error\n");
1752 
1753  /* Write the error bits back to clear them. */
1754  cfg &= (PCI_STATUS_PARITY |
1755  PCI_STATUS_SIG_TARGET_ABORT |
1756  PCI_STATUS_REC_TARGET_ABORT |
1757  PCI_STATUS_REC_MASTER_ABORT |
1758  PCI_STATUS_SIG_SYSTEM_ERROR |
1760  pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1761  }
1762 
1763  /* For all PCI errors, we should reset the chip. */
1764  return 1;
1765 }
1766 
1767 /* All non-normal interrupt conditions get serviced here.
1768  * Returns non-zero if we should just exit the interrupt
1769  * handler right now (ie. if we reset the card which invalidates
1770  * all of the other original irq status bits).
1771  */
1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1773  u32 status)
1774 {
1775  if (status & INTR_RX_TAG_ERROR) {
1776  /* corrupt RX tag framing */
1777  netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1778  "corrupt rx tag framing\n");
1779  spin_lock(&cp->stat_lock[0]);
1780  cp->net_stats[0].rx_errors++;
1781  spin_unlock(&cp->stat_lock[0]);
1782  goto do_reset;
1783  }
1784 
1785  if (status & INTR_RX_LEN_MISMATCH) {
1786  /* length mismatch. */
1787  netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1788  "length mismatch for rx frame\n");
1789  spin_lock(&cp->stat_lock[0]);
1790  cp->net_stats[0].rx_errors++;
1791  spin_unlock(&cp->stat_lock[0]);
1792  goto do_reset;
1793  }
1794 
1795  if (status & INTR_PCS_STATUS) {
1796  if (cas_pcs_interrupt(dev, cp, status))
1797  goto do_reset;
1798  }
1799 
1800  if (status & INTR_TX_MAC_STATUS) {
1801  if (cas_txmac_interrupt(dev, cp, status))
1802  goto do_reset;
1803  }
1804 
1805  if (status & INTR_RX_MAC_STATUS) {
1806  if (cas_rxmac_interrupt(dev, cp, status))
1807  goto do_reset;
1808  }
1809 
1810  if (status & INTR_MAC_CTRL_STATUS) {
1811  if (cas_mac_interrupt(dev, cp, status))
1812  goto do_reset;
1813  }
1814 
1815  if (status & INTR_MIF_STATUS) {
1816  if (cas_mif_interrupt(dev, cp, status))
1817  goto do_reset;
1818  }
1819 
1820  if (status & INTR_PCI_ERROR_STATUS) {
1821  if (cas_pci_interrupt(dev, cp, status))
1822  goto do_reset;
1823  }
1824  return 0;
1825 
1826 do_reset:
1827 #if 1
1830  netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1831  schedule_work(&cp->reset_task);
1832 #else
1833  atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1834  netdev_err(dev, "reset called in cas_abnormal_irq\n");
1835  schedule_work(&cp->reset_task);
1836 #endif
1837  return 1;
1838 }
1839 
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841  * determining whether to do a netif_stop/wakeup
1842  */
1843 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1846  const int len)
1847 {
1848  unsigned long off = addr + len;
1849 
1850  if (CAS_TABORT(cp) == 1)
1851  return 0;
1852  if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853  return 0;
1854  return TX_TARGET_ABORT_LEN;
1855 }
1856 
1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 {
1859  struct cas_tx_desc *txds;
1860  struct sk_buff **skbs;
1861  struct net_device *dev = cp->dev;
1862  int entry, count;
1863 
1864  spin_lock(&cp->tx_lock[ring]);
1865  txds = cp->init_txds[ring];
1866  skbs = cp->tx_skbs[ring];
1867  entry = cp->tx_old[ring];
1868 
1869  count = TX_BUFF_COUNT(ring, entry, limit);
1870  while (entry != limit) {
1871  struct sk_buff *skb = skbs[entry];
1872  dma_addr_t daddr;
1873  u32 dlen;
1874  int frag;
1875 
1876  if (!skb) {
1877  /* this should never occur */
1878  entry = TX_DESC_NEXT(ring, entry);
1879  continue;
1880  }
1881 
1882  /* however, we might get only a partial skb release. */
1883  count -= skb_shinfo(skb)->nr_frags +
1884  + cp->tx_tiny_use[ring][entry].nbufs + 1;
1885  if (count < 0)
1886  break;
1887 
1888  netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1889  "tx[%d] done, slot %d\n", ring, entry);
1890 
1891  skbs[entry] = NULL;
1892  cp->tx_tiny_use[ring][entry].nbufs = 0;
1893 
1894  for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895  struct cas_tx_desc *txd = txds + entry;
1896 
1897  daddr = le64_to_cpu(txd->buffer);
1898  dlen = CAS_VAL(TX_DESC_BUFLEN,
1899  le64_to_cpu(txd->control));
1900  pci_unmap_page(cp->pdev, daddr, dlen,
1902  entry = TX_DESC_NEXT(ring, entry);
1903 
1904  /* tiny buffer may follow */
1905  if (cp->tx_tiny_use[ring][entry].used) {
1906  cp->tx_tiny_use[ring][entry].used = 0;
1907  entry = TX_DESC_NEXT(ring, entry);
1908  }
1909  }
1910 
1911  spin_lock(&cp->stat_lock[ring]);
1912  cp->net_stats[ring].tx_packets++;
1913  cp->net_stats[ring].tx_bytes += skb->len;
1914  spin_unlock(&cp->stat_lock[ring]);
1915  dev_kfree_skb_irq(skb);
1916  }
1917  cp->tx_old[ring] = entry;
1918 
1919  /* this is wrong for multiple tx rings. the net device needs
1920  * multiple queues for this to do the right thing. we wait
1921  * for 2*packets to be available when using tiny buffers
1922  */
1923  if (netif_queue_stopped(dev) &&
1924  (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925  netif_wake_queue(dev);
1926  spin_unlock(&cp->tx_lock[ring]);
1927 }
1928 
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1930  u32 status)
1931 {
1932  int limit, ring;
1933 #ifdef USE_TX_COMPWB
1934  u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 #endif
1936  netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1937  "tx interrupt, status: 0x%x, %llx\n",
1938  status, (unsigned long long)compwb);
1939  /* process all the rings */
1940  for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942  /* use the completion writeback registers */
1943  limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944  CAS_VAL(TX_COMPWB_LSB, compwb);
1945  compwb = TX_COMPWB_NEXT(compwb);
1946 #else
1947  limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 #endif
1949  if (cp->tx_old[ring] != limit)
1950  cas_tx_ringN(cp, ring, limit);
1951  }
1952 }
1953 
1954 
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956  int entry, const u64 *words,
1957  struct sk_buff **skbref)
1958 {
1959  int dlen, hlen, len, i, alloclen;
1960  int off, swivel = RX_SWIVEL_OFF_VAL;
1961  struct cas_page *page;
1962  struct sk_buff *skb;
1963  void *addr, *crcaddr;
1964  __sum16 csum;
1965  char *p;
1966 
1967  hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968  dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1969  len = hlen + dlen;
1970 
1971  if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1972  alloclen = len;
1973  else
1974  alloclen = max(hlen, RX_COPY_MIN);
1975 
1976  skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1977  if (skb == NULL)
1978  return -1;
1979 
1980  *skbref = skb;
1981  skb_reserve(skb, swivel);
1982 
1983  p = skb->data;
1984  addr = crcaddr = NULL;
1985  if (hlen) { /* always copy header pages */
1986  i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987  page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988  off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1989  swivel;
1990 
1991  i = hlen;
1992  if (!dlen) /* attach FCS */
1993  i += cp->crc_size;
1994  pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1996  addr = cas_page_map(page->buffer);
1997  memcpy(p, addr + off, i);
1998  pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2000  cas_page_unmap(addr);
2001  RX_USED_ADD(page, 0x100);
2002  p += hlen;
2003  swivel = 0;
2004  }
2005 
2006 
2007  if (alloclen < (hlen + dlen)) {
2008  skb_frag_t *frag = skb_shinfo(skb)->frags;
2009 
2010  /* normal or jumbo packets. we use frags */
2011  i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012  page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013  off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014 
2015  hlen = min(cp->page_size - off, dlen);
2016  if (hlen < 0) {
2017  netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2018  "rx page overflow: %d\n", hlen);
2019  dev_kfree_skb_irq(skb);
2020  return -1;
2021  }
2022  i = hlen;
2023  if (i == dlen) /* attach FCS */
2024  i += cp->crc_size;
2025  pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2027 
2028  /* make sure we always copy a header */
2029  swivel = 0;
2030  if (p == (char *) skb->data) { /* not split */
2031  addr = cas_page_map(page->buffer);
2032  memcpy(p, addr + off, RX_COPY_MIN);
2033  pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035  cas_page_unmap(addr);
2036  off += RX_COPY_MIN;
2037  swivel = RX_COPY_MIN;
2038  RX_USED_ADD(page, cp->mtu_stride);
2039  } else {
2040  RX_USED_ADD(page, hlen);
2041  }
2042  skb_put(skb, alloclen);
2043 
2044  skb_shinfo(skb)->nr_frags++;
2045  skb->data_len += hlen - swivel;
2046  skb->truesize += hlen - swivel;
2047  skb->len += hlen - swivel;
2048 
2049  __skb_frag_set_page(frag, page->buffer);
2050  __skb_frag_ref(frag);
2051  frag->page_offset = off;
2052  skb_frag_size_set(frag, hlen - swivel);
2053 
2054  /* any more data? */
2055  if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2056  hlen = dlen;
2057  off = 0;
2058 
2059  i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2060  page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2061  pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2062  hlen + cp->crc_size,
2064  pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2065  hlen + cp->crc_size,
2067 
2068  skb_shinfo(skb)->nr_frags++;
2069  skb->data_len += hlen;
2070  skb->len += hlen;
2071  frag++;
2072 
2073  __skb_frag_set_page(frag, page->buffer);
2074  __skb_frag_ref(frag);
2075  frag->page_offset = 0;
2076  skb_frag_size_set(frag, hlen);
2077  RX_USED_ADD(page, hlen + cp->crc_size);
2078  }
2079 
2080  if (cp->crc_size) {
2081  addr = cas_page_map(page->buffer);
2082  crcaddr = addr + off + hlen;
2083  }
2084 
2085  } else {
2086  /* copying packet */
2087  if (!dlen)
2088  goto end_copy_pkt;
2089 
2090  i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2091  page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092  off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2093  hlen = min(cp->page_size - off, dlen);
2094  if (hlen < 0) {
2095  netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2096  "rx page overflow: %d\n", hlen);
2097  dev_kfree_skb_irq(skb);
2098  return -1;
2099  }
2100  i = hlen;
2101  if (i == dlen) /* attach FCS */
2102  i += cp->crc_size;
2103  pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2105  addr = cas_page_map(page->buffer);
2106  memcpy(p, addr + off, i);
2107  pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2109  cas_page_unmap(addr);
2110  if (p == (char *) skb->data) /* not split */
2111  RX_USED_ADD(page, cp->mtu_stride);
2112  else
2113  RX_USED_ADD(page, i);
2114 
2115  /* any more data? */
2116  if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117  p += hlen;
2118  i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2119  page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2120  pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2121  dlen + cp->crc_size,
2123  addr = cas_page_map(page->buffer);
2124  memcpy(p, addr, dlen + cp->crc_size);
2125  pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2126  dlen + cp->crc_size,
2128  cas_page_unmap(addr);
2129  RX_USED_ADD(page, dlen + cp->crc_size);
2130  }
2131 end_copy_pkt:
2132  if (cp->crc_size) {
2133  addr = NULL;
2134  crcaddr = skb->data + alloclen;
2135  }
2136  skb_put(skb, alloclen);
2137  }
2138 
2139  csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140  if (cp->crc_size) {
2141  /* checksum includes FCS. strip it out. */
2142  csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2143  csum_unfold(csum)));
2144  if (addr)
2145  cas_page_unmap(addr);
2146  }
2147  skb->protocol = eth_type_trans(skb, cp->dev);
2148  if (skb->protocol == htons(ETH_P_IP)) {
2149  skb->csum = csum_unfold(~csum);
2151  } else
2152  skb_checksum_none_assert(skb);
2153  return len;
2154 }
2155 
2156 
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158  * as nonreassm except that we batch up the buffers.
2159  * NOTE: we currently just treat each flow as a bunch of packets that
2160  * we pass up. a better way would be to coalesce the packets
2161  * into a jumbo packet. to do that, we need to do the following:
2162  * 1) the first packet will have a clean split between header and
2163  * data. save both.
2164  * 2) each time the next flow packet comes in, extend the
2165  * data length and merge the checksums.
2166  * 3) on flow release, fix up the header.
2167  * 4) make sure the higher layer doesn't care.
2168  * because packets get coalesced, we shouldn't run into fragment count
2169  * issues.
2170  */
2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2172  struct sk_buff *skb)
2173 {
2174  int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2175  struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176 
2177  /* this is protected at a higher layer, so no need to
2178  * do any additional locking here. stick the buffer
2179  * at the end.
2180  */
2181  __skb_queue_tail(flow, skb);
2182  if (words[0] & RX_COMP1_RELEASE_FLOW) {
2183  while ((skb = __skb_dequeue(flow))) {
2184  cas_skb_release(skb);
2185  }
2186  }
2187 }
2188 
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190  * layer, this will need to put in a replacement.
2191  */
2192 static void cas_post_page(struct cas *cp, const int ring, const int index)
2193 {
2194  cas_page_t *new;
2195  int entry;
2196 
2197  entry = cp->rx_old[ring];
2198 
2199  new = cas_page_swap(cp, ring, index);
2200  cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2201  cp->init_rxds[ring][entry].index =
2202  cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2203  CAS_BASE(RX_INDEX_RING, ring));
2204 
2205  entry = RX_DESC_ENTRY(ring, entry + 1);
2206  cp->rx_old[ring] = entry;
2207 
2208  if (entry % 4)
2209  return;
2210 
2211  if (ring == 0)
2212  writel(entry, cp->regs + REG_RX_KICK);
2213  else if ((N_RX_DESC_RINGS > 1) &&
2214  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2215  writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2216 }
2217 
2218 
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 {
2222  unsigned int entry, last, count, released;
2223  int cluster;
2224  cas_page_t **page = cp->rx_pages[ring];
2225 
2226  entry = cp->rx_old[ring];
2227 
2228  netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2229  "rxd[%d] interrupt, done: %d\n", ring, entry);
2230 
2231  cluster = -1;
2232  count = entry & 0x3;
2233  last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234  released = 0;
2235  while (entry != last) {
2236  /* make a new buffer if it's still in use */
2237  if (page_count(page[entry]->buffer) > 1) {
2238  cas_page_t *new = cas_page_dequeue(cp);
2239  if (!new) {
2240  /* let the timer know that we need to
2241  * do this again
2242  */
2243  cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2244  if (!timer_pending(&cp->link_timer))
2245  mod_timer(&cp->link_timer, jiffies +
2247  cp->rx_old[ring] = entry;
2248  cp->rx_last[ring] = num ? num - released : 0;
2249  return -ENOMEM;
2250  }
2251  spin_lock(&cp->rx_inuse_lock);
2252  list_add(&page[entry]->list, &cp->rx_inuse_list);
2253  spin_unlock(&cp->rx_inuse_lock);
2254  cp->init_rxds[ring][entry].buffer =
2255  cpu_to_le64(new->dma_addr);
2256  page[entry] = new;
2257 
2258  }
2259 
2260  if (++count == 4) {
2261  cluster = entry;
2262  count = 0;
2263  }
2264  released++;
2265  entry = RX_DESC_ENTRY(ring, entry + 1);
2266  }
2267  cp->rx_old[ring] = entry;
2268 
2269  if (cluster < 0)
2270  return 0;
2271 
2272  if (ring == 0)
2273  writel(cluster, cp->regs + REG_RX_KICK);
2274  else if ((N_RX_DESC_RINGS > 1) &&
2275  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2276  writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2277  return 0;
2278 }
2279 
2280 
2281 /* process a completion ring. packets are set up in three basic ways:
2282  * small packets: should be copied header + data in single buffer.
2283  * large packets: header and data in a single buffer.
2284  * split packets: header in a separate buffer from data.
2285  * data may be in multiple pages. data may be > 256
2286  * bytes but in a single page.
2287  *
2288  * NOTE: RX page posting is done in this routine as well. while there's
2289  * the capability of using multiple RX completion rings, it isn't
2290  * really worthwhile due to the fact that the page posting will
2291  * force serialization on the single descriptor ring.
2292  */
2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 {
2295  struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2296  int entry, drops;
2297  int npackets = 0;
2298 
2299  netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2300  "rx[%d] interrupt, done: %d/%d\n",
2301  ring,
2302  readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303 
2304  entry = cp->rx_new[ring];
2305  drops = 0;
2306  while (1) {
2307  struct cas_rx_comp *rxc = rxcs + entry;
2308  struct sk_buff *uninitialized_var(skb);
2309  int type, len;
2310  u64 words[4];
2311  int i, dring;
2312 
2313  words[0] = le64_to_cpu(rxc->word1);
2314  words[1] = le64_to_cpu(rxc->word2);
2315  words[2] = le64_to_cpu(rxc->word3);
2316  words[3] = le64_to_cpu(rxc->word4);
2317 
2318  /* don't touch if still owned by hw */
2319  type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2320  if (type == 0)
2321  break;
2322 
2323  /* hw hasn't cleared the zero bit yet */
2324  if (words[3] & RX_COMP4_ZERO) {
2325  break;
2326  }
2327 
2328  /* get info on the packet */
2329  if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2330  spin_lock(&cp->stat_lock[ring]);
2331  cp->net_stats[ring].rx_errors++;
2332  if (words[3] & RX_COMP4_LEN_MISMATCH)
2333  cp->net_stats[ring].rx_length_errors++;
2334  if (words[3] & RX_COMP4_BAD)
2335  cp->net_stats[ring].rx_crc_errors++;
2336  spin_unlock(&cp->stat_lock[ring]);
2337 
2338  /* We'll just return it to Cassini. */
2339  drop_it:
2340  spin_lock(&cp->stat_lock[ring]);
2341  ++cp->net_stats[ring].rx_dropped;
2342  spin_unlock(&cp->stat_lock[ring]);
2343  goto next;
2344  }
2345 
2346  len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2347  if (len < 0) {
2348  ++drops;
2349  goto drop_it;
2350  }
2351 
2352  /* see if it's a flow re-assembly or not. the driver
2353  * itself handles release back up.
2354  */
2355  if (RX_DONT_BATCH || (type == 0x2)) {
2356  /* non-reassm: these always get released */
2357  cas_skb_release(skb);
2358  } else {
2359  cas_rx_flow_pkt(cp, words, skb);
2360  }
2361 
2362  spin_lock(&cp->stat_lock[ring]);
2363  cp->net_stats[ring].rx_packets++;
2364  cp->net_stats[ring].rx_bytes += len;
2365  spin_unlock(&cp->stat_lock[ring]);
2366 
2367  next:
2368  npackets++;
2369 
2370  /* should it be released? */
2371  if (words[0] & RX_COMP1_RELEASE_HDR) {
2372  i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2373  dring = CAS_VAL(RX_INDEX_RING, i);
2374  i = CAS_VAL(RX_INDEX_NUM, i);
2375  cas_post_page(cp, dring, i);
2376  }
2377 
2378  if (words[0] & RX_COMP1_RELEASE_DATA) {
2379  i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2380  dring = CAS_VAL(RX_INDEX_RING, i);
2381  i = CAS_VAL(RX_INDEX_NUM, i);
2382  cas_post_page(cp, dring, i);
2383  }
2384 
2385  if (words[0] & RX_COMP1_RELEASE_NEXT) {
2386  i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2387  dring = CAS_VAL(RX_INDEX_RING, i);
2388  i = CAS_VAL(RX_INDEX_NUM, i);
2389  cas_post_page(cp, dring, i);
2390  }
2391 
2392  /* skip to the next entry */
2393  entry = RX_COMP_ENTRY(ring, entry + 1 +
2394  CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 #ifdef USE_NAPI
2396  if (budget && (npackets >= budget))
2397  break;
2398 #endif
2399  }
2400  cp->rx_new[ring] = entry;
2401 
2402  if (drops)
2403  netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2404  return npackets;
2405 }
2406 
2407 
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device *dev,
2410  struct cas *cp, int ring)
2411 {
2412  struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2413  int last, entry;
2414 
2415  last = cp->rx_cur[ring];
2416  entry = cp->rx_new[ring];
2417  netif_printk(cp, intr, KERN_DEBUG, dev,
2418  "rxc[%d] interrupt, done: %d/%d\n",
2419  ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420 
2421  /* zero and re-mark descriptors */
2422  while (last != entry) {
2423  cas_rxc_init(rxc + last);
2424  last = RX_COMP_ENTRY(ring, last + 1);
2425  }
2426  cp->rx_cur[ring] = last;
2427 
2428  if (ring == 0)
2429  writel(last, cp->regs + REG_RX_COMP_TAIL);
2430  else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2431  writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2432 }
2433 
2434 
2435 
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437  * rings 3 and 4 are identical
2438  */
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device *dev,
2441  struct cas *cp, const u32 status,
2442  const int ring)
2443 {
2444  if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2445  cas_post_rxcs_ringN(dev, cp, ring);
2446 }
2447 
2448 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 {
2450  struct net_device *dev = dev_id;
2451  struct cas *cp = netdev_priv(dev);
2452  unsigned long flags;
2453  int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2454  u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455 
2456  /* check for shared irq */
2457  if (status == 0)
2458  return IRQ_NONE;
2459 
2460  spin_lock_irqsave(&cp->lock, flags);
2461  if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2462 #ifdef USE_NAPI
2463  cas_mask_intr(cp);
2464  napi_schedule(&cp->napi);
2465 #else
2466  cas_rx_ringN(cp, ring, 0);
2467 #endif
2468  status &= ~INTR_RX_DONE_ALT;
2469  }
2470 
2471  if (status)
2472  cas_handle_irqN(dev, cp, status, ring);
2473  spin_unlock_irqrestore(&cp->lock, flags);
2474  return IRQ_HANDLED;
2475 }
2476 #endif
2477 
2478 #ifdef USE_PCI_INTB
2479 /* everything but rx packets */
2480 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 {
2482  if (status & INTR_RX_BUF_UNAVAIL_1) {
2483  /* Frame arrived, no free RX buffers available.
2484  * NOTE: we can get this on a link transition. */
2485  cas_post_rxds_ringN(cp, 1, 0);
2486  spin_lock(&cp->stat_lock[1]);
2487  cp->net_stats[1].rx_dropped++;
2488  spin_unlock(&cp->stat_lock[1]);
2489  }
2490 
2491  if (status & INTR_RX_BUF_AE_1)
2492  cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2493  RX_AE_FREEN_VAL(1));
2494 
2495  if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2496  cas_post_rxcs_ringN(cp, 1);
2497 }
2498 
2499 /* ring 2 handles a few more events than 3 and 4 */
2500 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 {
2502  struct net_device *dev = dev_id;
2503  struct cas *cp = netdev_priv(dev);
2504  unsigned long flags;
2505  u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506 
2507  /* check for shared interrupt */
2508  if (status == 0)
2509  return IRQ_NONE;
2510 
2511  spin_lock_irqsave(&cp->lock, flags);
2512  if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2513 #ifdef USE_NAPI
2514  cas_mask_intr(cp);
2515  napi_schedule(&cp->napi);
2516 #else
2517  cas_rx_ringN(cp, 1, 0);
2518 #endif
2519  status &= ~INTR_RX_DONE_ALT;
2520  }
2521  if (status)
2522  cas_handle_irq1(cp, status);
2523  spin_unlock_irqrestore(&cp->lock, flags);
2524  return IRQ_HANDLED;
2525 }
2526 #endif
2527 
2528 static inline void cas_handle_irq(struct net_device *dev,
2529  struct cas *cp, const u32 status)
2530 {
2531  /* housekeeping interrupts */
2532  if (status & INTR_ERROR_MASK)
2533  cas_abnormal_irq(dev, cp, status);
2534 
2535  if (status & INTR_RX_BUF_UNAVAIL) {
2536  /* Frame arrived, no free RX buffers available.
2537  * NOTE: we can get this on a link transition.
2538  */
2539  cas_post_rxds_ringN(cp, 0, 0);
2540  spin_lock(&cp->stat_lock[0]);
2541  cp->net_stats[0].rx_dropped++;
2542  spin_unlock(&cp->stat_lock[0]);
2543  } else if (status & INTR_RX_BUF_AE) {
2544  cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2545  RX_AE_FREEN_VAL(0));
2546  }
2547 
2548  if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2549  cas_post_rxcs_ringN(dev, cp, 0);
2550 }
2551 
2552 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 {
2554  struct net_device *dev = dev_id;
2555  struct cas *cp = netdev_priv(dev);
2556  unsigned long flags;
2557  u32 status = readl(cp->regs + REG_INTR_STATUS);
2558 
2559  if (status == 0)
2560  return IRQ_NONE;
2561 
2562  spin_lock_irqsave(&cp->lock, flags);
2563  if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2564  cas_tx(dev, cp, status);
2565  status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2566  }
2567 
2568  if (status & INTR_RX_DONE) {
2569 #ifdef USE_NAPI
2570  cas_mask_intr(cp);
2571  napi_schedule(&cp->napi);
2572 #else
2573  cas_rx_ringN(cp, 0, 0);
2574 #endif
2575  status &= ~INTR_RX_DONE;
2576  }
2577 
2578  if (status)
2579  cas_handle_irq(dev, cp, status);
2580  spin_unlock_irqrestore(&cp->lock, flags);
2581  return IRQ_HANDLED;
2582 }
2583 
2584 
2585 #ifdef USE_NAPI
2586 static int cas_poll(struct napi_struct *napi, int budget)
2587 {
2588  struct cas *cp = container_of(napi, struct cas, napi);
2589  struct net_device *dev = cp->dev;
2590  int i, enable_intr, credits;
2591  u32 status = readl(cp->regs + REG_INTR_STATUS);
2592  unsigned long flags;
2593 
2594  spin_lock_irqsave(&cp->lock, flags);
2595  cas_tx(dev, cp, status);
2596  spin_unlock_irqrestore(&cp->lock, flags);
2597 
2598  /* NAPI rx packets. we spread the credits across all of the
2599  * rxc rings
2600  *
2601  * to make sure we're fair with the work we loop through each
2602  * ring N_RX_COMP_RING times with a request of
2603  * budget / N_RX_COMP_RINGS
2604  */
2605  enable_intr = 1;
2606  credits = 0;
2607  for (i = 0; i < N_RX_COMP_RINGS; i++) {
2608  int j;
2609  for (j = 0; j < N_RX_COMP_RINGS; j++) {
2610  credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2611  if (credits >= budget) {
2612  enable_intr = 0;
2613  goto rx_comp;
2614  }
2615  }
2616  }
2617 
2618 rx_comp:
2619  /* final rx completion */
2620  spin_lock_irqsave(&cp->lock, flags);
2621  if (status)
2622  cas_handle_irq(dev, cp, status);
2623 
2624 #ifdef USE_PCI_INTB
2625  if (N_RX_COMP_RINGS > 1) {
2626  status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2627  if (status)
2628  cas_handle_irq1(dev, cp, status);
2629  }
2630 #endif
2631 
2632 #ifdef USE_PCI_INTC
2633  if (N_RX_COMP_RINGS > 2) {
2634  status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2635  if (status)
2636  cas_handle_irqN(dev, cp, status, 2);
2637  }
2638 #endif
2639 
2640 #ifdef USE_PCI_INTD
2641  if (N_RX_COMP_RINGS > 3) {
2642  status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2643  if (status)
2644  cas_handle_irqN(dev, cp, status, 3);
2645  }
2646 #endif
2647  spin_unlock_irqrestore(&cp->lock, flags);
2648  if (enable_intr) {
2649  napi_complete(napi);
2650  cas_unmask_intr(cp);
2651  }
2652  return credits;
2653 }
2654 #endif
2655 
2656 #ifdef CONFIG_NET_POLL_CONTROLLER
2657 static void cas_netpoll(struct net_device *dev)
2658 {
2659  struct cas *cp = netdev_priv(dev);
2660 
2661  cas_disable_irq(cp, 0);
2662  cas_interrupt(cp->pdev->irq, dev);
2663  cas_enable_irq(cp, 0);
2664 
2665 #ifdef USE_PCI_INTB
2666  if (N_RX_COMP_RINGS > 1) {
2667  /* cas_interrupt1(); */
2668  }
2669 #endif
2670 #ifdef USE_PCI_INTC
2671  if (N_RX_COMP_RINGS > 2) {
2672  /* cas_interruptN(); */
2673  }
2674 #endif
2675 #ifdef USE_PCI_INTD
2676  if (N_RX_COMP_RINGS > 3) {
2677  /* cas_interruptN(); */
2678  }
2679 #endif
2680 }
2681 #endif
2682 
2683 static void cas_tx_timeout(struct net_device *dev)
2684 {
2685  struct cas *cp = netdev_priv(dev);
2686 
2687  netdev_err(dev, "transmit timed out, resetting\n");
2688  if (!cp->hw_running) {
2689  netdev_err(dev, "hrm.. hw not running!\n");
2690  return;
2691  }
2692 
2693  netdev_err(dev, "MIF_STATE[%08x]\n",
2695 
2696  netdev_err(dev, "MAC_STATE[%08x]\n",
2698 
2699  netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700  readl(cp->regs + REG_TX_CFG),
2701  readl(cp->regs + REG_MAC_TX_STATUS),
2702  readl(cp->regs + REG_MAC_TX_CFG),
2706  readl(cp->regs + REG_TX_SM_1),
2707  readl(cp->regs + REG_TX_SM_2));
2708 
2709  netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2710  readl(cp->regs + REG_RX_CFG),
2711  readl(cp->regs + REG_MAC_RX_STATUS),
2712  readl(cp->regs + REG_MAC_RX_CFG));
2713 
2714  netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2716  readl(cp->regs + REG_HP_STATUS0),
2717  readl(cp->regs + REG_HP_STATUS1),
2718  readl(cp->regs + REG_HP_STATUS2));
2719 
2720 #if 1
2723  schedule_work(&cp->reset_task);
2724 #else
2725  atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2726  schedule_work(&cp->reset_task);
2727 #endif
2728 }
2729 
2730 static inline int cas_intme(int ring, int entry)
2731 {
2732  /* Algorithm: IRQ every 1/2 of descriptors. */
2733  if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2734  return 1;
2735  return 0;
2736 }
2737 
2738 
2739 static void cas_write_txd(struct cas *cp, int ring, int entry,
2740  dma_addr_t mapping, int len, u64 ctrl, int last)
2741 {
2742  struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743 
2744  ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2745  if (cas_intme(ring, entry))
2746  ctrl |= TX_DESC_INTME;
2747  if (last)
2748  ctrl |= TX_DESC_EOF;
2749  txd->control = cpu_to_le64(ctrl);
2750  txd->buffer = cpu_to_le64(mapping);
2751 }
2752 
2753 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2754  const int entry)
2755 {
2756  return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2757 }
2758 
2759 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2760  const int entry, const int tentry)
2761 {
2762  cp->tx_tiny_use[ring][tentry].nbufs++;
2763  cp->tx_tiny_use[ring][entry].used = 1;
2764  return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2765 }
2766 
2767 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2768  struct sk_buff *skb)
2769 {
2770  struct net_device *dev = cp->dev;
2771  int entry, nr_frags, frag, tabort, tentry;
2773  unsigned long flags;
2774  u64 ctrl;
2775  u32 len;
2776 
2777  spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778 
2779  /* This is a hard error, log it. */
2780  if (TX_BUFFS_AVAIL(cp, ring) <=
2781  CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2782  netif_stop_queue(dev);
2783  spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2784  netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2785  return 1;
2786  }
2787 
2788  ctrl = 0;
2789  if (skb->ip_summed == CHECKSUM_PARTIAL) {
2790  const u64 csum_start_off = skb_checksum_start_offset(skb);
2791  const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2792 
2793  ctrl = TX_DESC_CSUM_EN |
2794  CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2795  CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2796  }
2797 
2798  entry = cp->tx_new[ring];
2799  cp->tx_skbs[ring][entry] = skb;
2800 
2801  nr_frags = skb_shinfo(skb)->nr_frags;
2802  len = skb_headlen(skb);
2803  mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2804  offset_in_page(skb->data), len,
2806 
2807  tentry = entry;
2808  tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2809  if (unlikely(tabort)) {
2810  /* NOTE: len is always > tabort */
2811  cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812  ctrl | TX_DESC_SOF, 0);
2813  entry = TX_DESC_NEXT(ring, entry);
2814 
2815  skb_copy_from_linear_data_offset(skb, len - tabort,
2816  tx_tiny_buf(cp, ring, entry), tabort);
2817  mapping = tx_tiny_map(cp, ring, entry, tentry);
2818  cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2819  (nr_frags == 0));
2820  } else {
2821  cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2822  TX_DESC_SOF, (nr_frags == 0));
2823  }
2824  entry = TX_DESC_NEXT(ring, entry);
2825 
2826  for (frag = 0; frag < nr_frags; frag++) {
2827  const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828 
2829  len = skb_frag_size(fragp);
2830  mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2831  DMA_TO_DEVICE);
2832 
2833  tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2834  if (unlikely(tabort)) {
2835  void *addr;
2836 
2837  /* NOTE: len is always > tabort */
2838  cas_write_txd(cp, ring, entry, mapping, len - tabort,
2839  ctrl, 0);
2840  entry = TX_DESC_NEXT(ring, entry);
2841 
2842  addr = cas_page_map(skb_frag_page(fragp));
2843  memcpy(tx_tiny_buf(cp, ring, entry),
2844  addr + fragp->page_offset + len - tabort,
2845  tabort);
2846  cas_page_unmap(addr);
2847  mapping = tx_tiny_map(cp, ring, entry, tentry);
2848  len = tabort;
2849  }
2850 
2851  cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2852  (frag + 1 == nr_frags));
2853  entry = TX_DESC_NEXT(ring, entry);
2854  }
2855 
2856  cp->tx_new[ring] = entry;
2857  if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2858  netif_stop_queue(dev);
2859 
2860  netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2861  "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2862  ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2863  writel(entry, cp->regs + REG_TX_KICKN(ring));
2864  spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2865  return 0;
2866 }
2867 
2868 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2869 {
2870  struct cas *cp = netdev_priv(dev);
2871 
2872  /* this is only used as a load-balancing hint, so it doesn't
2873  * need to be SMP safe
2874  */
2875  static int ring;
2876 
2877  if (skb_padto(skb, cp->min_frame_size))
2878  return NETDEV_TX_OK;
2879 
2880  /* XXX: we need some higher-level QoS hooks to steer packets to
2881  * individual queues.
2882  */
2883  if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2884  return NETDEV_TX_BUSY;
2885  return NETDEV_TX_OK;
2886 }
2887 
2888 static void cas_init_tx_dma(struct cas *cp)
2889 {
2890  u64 desc_dma = cp->block_dvma;
2891  unsigned long off;
2892  u32 val;
2893  int i;
2894 
2895  /* set up tx completion writeback registers. must be 8-byte aligned */
2896 #ifdef USE_TX_COMPWB
2897  off = offsetof(struct cas_init_block, tx_compwb);
2898  writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2899  writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2900 #endif
2901 
2902  /* enable completion writebacks, enable paced mode,
2903  * disable read pipe, and disable pre-interrupt compwbs
2904  */
2909 
2910  /* write out tx ring info and tx desc bases */
2911  for (i = 0; i < MAX_TX_RINGS; i++) {
2912  off = (unsigned long) cp->init_txds[i] -
2913  (unsigned long) cp->init_block;
2914 
2915  val |= CAS_TX_RINGN_BASE(i);
2916  writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2917  writel((desc_dma + off) & 0xffffffff, cp->regs +
2918  REG_TX_DBN_LOW(i));
2919  /* don't zero out the kick register here as the system
2920  * will wedge
2921  */
2922  }
2923  writel(val, cp->regs + REG_TX_CFG);
2924 
2925  /* program max burst sizes. these numbers should be different
2926  * if doing QoS.
2927  */
2928 #ifdef USE_QOS
2929  writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2930  writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2931  writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2932  writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2933 #else
2934  writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2935  writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2936  writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2937  writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2938 #endif
2939 }
2940 
2941 /* Must be invoked under cp->lock. */
2942 static inline void cas_init_dma(struct cas *cp)
2943 {
2944  cas_init_tx_dma(cp);
2945  cas_init_rx_dma(cp);
2946 }
2947 
2948 static void cas_process_mc_list(struct cas *cp)
2949 {
2950  u16 hash_table[16];
2951  u32 crc;
2952  struct netdev_hw_addr *ha;
2953  int i = 1;
2954 
2955  memset(hash_table, 0, sizeof(hash_table));
2956  netdev_for_each_mc_addr(ha, cp->dev) {
2957  if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2958  /* use the alternate mac address registers for the
2959  * first 15 multicast addresses
2960  */
2961  writel((ha->addr[4] << 8) | ha->addr[5],
2962  cp->regs + REG_MAC_ADDRN(i*3 + 0));
2963  writel((ha->addr[2] << 8) | ha->addr[3],
2964  cp->regs + REG_MAC_ADDRN(i*3 + 1));
2965  writel((ha->addr[0] << 8) | ha->addr[1],
2966  cp->regs + REG_MAC_ADDRN(i*3 + 2));
2967  i++;
2968  }
2969  else {
2970  /* use hw hash table for the next series of
2971  * multicast addresses
2972  */
2973  crc = ether_crc_le(ETH_ALEN, ha->addr);
2974  crc >>= 24;
2975  hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2976  }
2977  }
2978  for (i = 0; i < 16; i++)
2979  writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2980 }
2981 
2982 /* Must be invoked under cp->lock. */
2983 static u32 cas_setup_multicast(struct cas *cp)
2984 {
2985  u32 rxcfg = 0;
2986  int i;
2987 
2988  if (cp->dev->flags & IFF_PROMISC) {
2989  rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990 
2991  } else if (cp->dev->flags & IFF_ALLMULTI) {
2992  for (i=0; i < 16; i++)
2993  writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2994  rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2995 
2996  } else {
2997  cas_process_mc_list(cp);
2998  rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2999  }
3000 
3001  return rxcfg;
3002 }
3003 
3004 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3005 static void cas_clear_mac_err(struct cas *cp)
3006 {
3007  writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3008  writel(0, cp->regs + REG_MAC_COLL_FIRST);
3009  writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3010  writel(0, cp->regs + REG_MAC_COLL_LATE);
3011  writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3012  writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3013  writel(0, cp->regs + REG_MAC_RECV_FRAME);
3014  writel(0, cp->regs + REG_MAC_LEN_ERR);
3015  writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3016  writel(0, cp->regs + REG_MAC_FCS_ERR);
3017  writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3018 }
3019 
3020 
3021 static void cas_mac_reset(struct cas *cp)
3022 {
3023  int i;
3024 
3025  /* do both TX and RX reset */
3026  writel(0x1, cp->regs + REG_MAC_TX_RESET);
3027  writel(0x1, cp->regs + REG_MAC_RX_RESET);
3028 
3029  /* wait for TX */
3030  i = STOP_TRIES;
3031  while (i-- > 0) {
3032  if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3033  break;
3034  udelay(10);
3035  }
3036 
3037  /* wait for RX */
3038  i = STOP_TRIES;
3039  while (i-- > 0) {
3040  if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3041  break;
3042  udelay(10);
3043  }
3044 
3045  if (readl(cp->regs + REG_MAC_TX_RESET) |
3046  readl(cp->regs + REG_MAC_RX_RESET))
3047  netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3048  readl(cp->regs + REG_MAC_TX_RESET),
3049  readl(cp->regs + REG_MAC_RX_RESET),
3051 }
3052 
3053 
3054 /* Must be invoked under cp->lock. */
3055 static void cas_init_mac(struct cas *cp)
3056 {
3057  unsigned char *e = &cp->dev->dev_addr[0];
3058  int i;
3059  cas_mac_reset(cp);
3060 
3061  /* setup core arbitration weight register */
3062  writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3063 
3064  /* XXX Use pci_dma_burst_advice() */
3065 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3066  /* set the infinite burst register for chips that don't have
3067  * pci issues.
3068  */
3069  if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3071 #endif
3072 
3073  writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3074 
3075  writel(0x00, cp->regs + REG_MAC_IPG0);
3076  writel(0x08, cp->regs + REG_MAC_IPG1);
3077  writel(0x04, cp->regs + REG_MAC_IPG2);
3078 
3079  /* change later for 802.3z */
3080  writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3081 
3082  /* min frame + FCS */
3084 
3085  /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3086  * specify the maximum frame size to prevent RX tag errors on
3087  * oversized frames.
3088  */
3089  writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3090  CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3091  (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3092  cp->regs + REG_MAC_FRAMESIZE_MAX);
3093 
3094  /* NOTE: crc_size is used as a surrogate for half-duplex.
3095  * workaround saturn half-duplex issue by increasing preamble
3096  * size to 65 bytes.
3097  */
3098  if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3099  writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3100  else
3101  writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3102  writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3103  writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3104  writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3105 
3106  writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3107 
3108  writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3109  writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3110  writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3113 
3114  /* setup mac address in perfect filter array */
3115  for (i = 0; i < 45; i++)
3116  writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3117 
3118  writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3119  writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3120  writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3121 
3122  writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3123  writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3124  writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3125 
3126  cp->mac_rx_cfg = cas_setup_multicast(cp);
3127 
3128  spin_lock(&cp->stat_lock[N_TX_RINGS]);
3129  cas_clear_mac_err(cp);
3130  spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3131 
3132  /* Setup MAC interrupts. We want to get all of the interesting
3133  * counter expiration events, but we do not want to hear about
3134  * normal rx/tx as the DMA engine tells us that.
3135  */
3138 
3139  /* Don't enable even the PAUSE interrupts for now, we
3140  * make no use of those events other than to record them.
3141  */
3142  writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3143 }
3144 
3145 /* Must be invoked under cp->lock. */
3146 static void cas_init_pause_thresholds(struct cas *cp)
3147 {
3148  /* Calculate pause thresholds. Setting the OFF threshold to the
3149  * full RX fifo size effectively disables PAUSE generation
3150  */
3151  if (cp->rx_fifo_size <= (2 * 1024)) {
3152  cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3153  } else {
3154  int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3155  if (max_frame * 3 > cp->rx_fifo_size) {
3156  cp->rx_pause_off = 7104;
3157  cp->rx_pause_on = 960;
3158  } else {
3159  int off = (cp->rx_fifo_size - (max_frame * 2));
3160  int on = off - max_frame;
3161  cp->rx_pause_off = off;
3162  cp->rx_pause_on = on;
3163  }
3164  }
3165 }
3166 
3167 static int cas_vpd_match(const void __iomem *p, const char *str)
3168 {
3169  int len = strlen(str) + 1;
3170  int i;
3171 
3172  for (i = 0; i < len; i++) {
3173  if (readb(p + i) != str[i])
3174  return 0;
3175  }
3176  return 1;
3177 }
3178 
3179 
3180 /* get the mac address by reading the vpd information in the rom.
3181  * also get the phy type and determine if there's an entropy generator.
3182  * NOTE: this is a bit convoluted for the following reasons:
3183  * 1) vpd info has order-dependent mac addresses for multinic cards
3184  * 2) the only way to determine the nic order is to use the slot
3185  * number.
3186  * 3) fiber cards don't have bridges, so their slot numbers don't
3187  * mean anything.
3188  * 4) we don't actually know we have a fiber card until after
3189  * the mac addresses are parsed.
3190  */
3191 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3192  const int offset)
3193 {
3194  void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3195  void __iomem *base, *kstart;
3196  int i, len;
3197  int found = 0;
3198 #define VPD_FOUND_MAC 0x01
3199 #define VPD_FOUND_PHY 0x02
3200 
3201  int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3202  int mac_off = 0;
3203 
3204 #if defined(CONFIG_SPARC)
3205  const unsigned char *addr;
3206 #endif
3207 
3208  /* give us access to the PROM */
3210  cp->regs + REG_BIM_LOCAL_DEV_EN);
3211 
3212  /* check for an expansion rom */
3213  if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3214  goto use_random_mac_addr;
3215 
3216  /* search for beginning of vpd */
3217  base = NULL;
3218  for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3219  /* check for PCIR */
3220  if ((readb(p + i + 0) == 0x50) &&
3221  (readb(p + i + 1) == 0x43) &&
3222  (readb(p + i + 2) == 0x49) &&
3223  (readb(p + i + 3) == 0x52)) {
3224  base = p + (readb(p + i + 8) |
3225  (readb(p + i + 9) << 8));
3226  break;
3227  }
3228  }
3229 
3230  if (!base || (readb(base) != 0x82))
3231  goto use_random_mac_addr;
3232 
3233  i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3234  while (i < EXPANSION_ROM_SIZE) {
3235  if (readb(base + i) != 0x90) /* no vpd found */
3236  goto use_random_mac_addr;
3237 
3238  /* found a vpd field */
3239  len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3240 
3241  /* extract keywords */
3242  kstart = base + i + 3;
3243  p = kstart;
3244  while ((p - kstart) < len) {
3245  int klen = readb(p + 2);
3246  int j;
3247  char type;
3248 
3249  p += 3;
3250 
3251  /* look for the following things:
3252  * -- correct length == 29
3253  * 3 (type) + 2 (size) +
3254  * 18 (strlen("local-mac-address") + 1) +
3255  * 6 (mac addr)
3256  * -- VPD Instance 'I'
3257  * -- VPD Type Bytes 'B'
3258  * -- VPD data length == 6
3259  * -- property string == local-mac-address
3260  *
3261  * -- correct length == 24
3262  * 3 (type) + 2 (size) +
3263  * 12 (strlen("entropy-dev") + 1) +
3264  * 7 (strlen("vms110") + 1)
3265  * -- VPD Instance 'I'
3266  * -- VPD Type String 'B'
3267  * -- VPD data length == 7
3268  * -- property string == entropy-dev
3269  *
3270  * -- correct length == 18
3271  * 3 (type) + 2 (size) +
3272  * 9 (strlen("phy-type") + 1) +
3273  * 4 (strlen("pcs") + 1)
3274  * -- VPD Instance 'I'
3275  * -- VPD Type String 'S'
3276  * -- VPD data length == 4
3277  * -- property string == phy-type
3278  *
3279  * -- correct length == 23
3280  * 3 (type) + 2 (size) +
3281  * 14 (strlen("phy-interface") + 1) +
3282  * 4 (strlen("pcs") + 1)
3283  * -- VPD Instance 'I'
3284  * -- VPD Type String 'S'
3285  * -- VPD data length == 4
3286  * -- property string == phy-interface
3287  */
3288  if (readb(p) != 'I')
3289  goto next;
3290 
3291  /* finally, check string and length */
3292  type = readb(p + 3);
3293  if (type == 'B') {
3294  if ((klen == 29) && readb(p + 4) == 6 &&
3295  cas_vpd_match(p + 5,
3296  "local-mac-address")) {
3297  if (mac_off++ > offset)
3298  goto next;
3299 
3300  /* set mac address */
3301  for (j = 0; j < 6; j++)
3302  dev_addr[j] =
3303  readb(p + 23 + j);
3304  goto found_mac;
3305  }
3306  }
3307 
3308  if (type != 'S')
3309  goto next;
3310 
3311 #ifdef USE_ENTROPY_DEV
3312  if ((klen == 24) &&
3313  cas_vpd_match(p + 5, "entropy-dev") &&
3314  cas_vpd_match(p + 17, "vms110")) {
3316  goto next;
3317  }
3318 #endif
3319 
3320  if (found & VPD_FOUND_PHY)
3321  goto next;
3322 
3323  if ((klen == 18) && readb(p + 4) == 4 &&
3324  cas_vpd_match(p + 5, "phy-type")) {
3325  if (cas_vpd_match(p + 14, "pcs")) {
3326  phy_type = CAS_PHY_SERDES;
3327  goto found_phy;
3328  }
3329  }
3330 
3331  if ((klen == 23) && readb(p + 4) == 4 &&
3332  cas_vpd_match(p + 5, "phy-interface")) {
3333  if (cas_vpd_match(p + 19, "pcs")) {
3334  phy_type = CAS_PHY_SERDES;
3335  goto found_phy;
3336  }
3337  }
3338 found_mac:
3339  found |= VPD_FOUND_MAC;
3340  goto next;
3341 
3342 found_phy:
3343  found |= VPD_FOUND_PHY;
3344 
3345 next:
3346  p += klen;
3347  }
3348  i += len + 3;
3349  }
3350 
3351 use_random_mac_addr:
3352  if (found & VPD_FOUND_MAC)
3353  goto done;
3354 
3355 #if defined(CONFIG_SPARC)
3356  addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3357  if (addr != NULL) {
3358  memcpy(dev_addr, addr, 6);
3359  goto done;
3360  }
3361 #endif
3362 
3363  /* Sun MAC prefix then 3 random bytes. */
3364  pr_info("MAC address not found in ROM VPD\n");
3365  dev_addr[0] = 0x08;
3366  dev_addr[1] = 0x00;
3367  dev_addr[2] = 0x20;
3368  get_random_bytes(dev_addr + 3, 3);
3369 
3370 done:
3371  writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3372  return phy_type;
3373 }
3374 
3375 /* check pci invariants */
3376 static void cas_check_pci_invariants(struct cas *cp)
3377 {
3378  struct pci_dev *pdev = cp->pdev;
3379 
3380  cp->cas_flags = 0;
3381  if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3382  (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3383  if (pdev->revision >= CAS_ID_REVPLUS)
3385  if (pdev->revision < CAS_ID_REVPLUS02u)
3387 
3388  /* Original Cassini supports HW CSUM, but it's not
3389  * enabled by default as it can trigger TX hangs.
3390  */
3391  if (pdev->revision < CAS_ID_REV2)
3393  } else {
3394  /* Only sun has original cassini chips. */
3396 
3397  /* We use a flag because the same phy might be externally
3398  * connected.
3399  */
3400  if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3401  (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3402  cp->cas_flags |= CAS_FLAG_SATURN;
3403  }
3404 }
3405 
3406 
3407 static int cas_check_invariants(struct cas *cp)
3408 {
3409  struct pci_dev *pdev = cp->pdev;
3410  u32 cfg;
3411  int i;
3412 
3413  /* get page size for rx buffers. */
3414  cp->page_order = 0;
3415 #ifdef USE_PAGE_ORDER
3417  /* see if we can allocate larger pages */
3418  struct page *page = alloc_pages(GFP_ATOMIC,
3420  PAGE_SHIFT);
3421  if (page) {
3424  } else {
3425  printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3426  }
3427  }
3428 #endif
3429  cp->page_size = (PAGE_SIZE << cp->page_order);
3430 
3431  /* Fetch the FIFO configurations. */
3432  cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3433  cp->rx_fifo_size = RX_FIFO_SIZE;
3434 
3435  /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3436  * they're both connected.
3437  */
3438  cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3439  PCI_SLOT(pdev->devfn));
3440  if (cp->phy_type & CAS_PHY_SERDES) {
3442  return 0; /* no more checking needed */
3443  }
3444 
3445  /* MII */
3446  cfg = readl(cp->regs + REG_MIF_CFG);
3447  if (cfg & MIF_CFG_MDIO_1) {
3449  } else if (cfg & MIF_CFG_MDIO_0) {
3451  }
3452 
3453  cas_mif_poll(cp, 0);
3455 
3456  for (i = 0; i < 32; i++) {
3457  u32 phy_id;
3458  int j;
3459 
3460  for (j = 0; j < 3; j++) {
3461  cp->phy_addr = i;
3462  phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3463  phy_id |= cas_phy_read(cp, MII_PHYSID2);
3464  if (phy_id && (phy_id != 0xFFFFFFFF)) {
3465  cp->phy_id = phy_id;
3466  goto done;
3467  }
3468  }
3469  }
3470  pr_err("MII phy did not respond [%08x]\n",
3472  return -1;
3473 
3474 done:
3475  /* see if we can do gigabit */
3476  cfg = cas_phy_read(cp, MII_BMSR);
3477  if ((cfg & CAS_BMSR_1000_EXTEND) &&
3478  cas_phy_read(cp, CAS_MII_1000_EXTEND))
3480  return 0;
3481 }
3482 
3483 /* Must be invoked under cp->lock. */
3484 static inline void cas_start_dma(struct cas *cp)
3485 {
3486  int i;
3487  u32 val;
3488  int txfailed = 0;
3489 
3490  /* enable dma */
3491  val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3492  writel(val, cp->regs + REG_TX_CFG);
3493  val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3494  writel(val, cp->regs + REG_RX_CFG);
3495 
3496  /* enable the mac */
3497  val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3498  writel(val, cp->regs + REG_MAC_TX_CFG);
3499  val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3500  writel(val, cp->regs + REG_MAC_RX_CFG);
3501 
3502  i = STOP_TRIES;
3503  while (i-- > 0) {
3504  val = readl(cp->regs + REG_MAC_TX_CFG);
3505  if ((val & MAC_TX_CFG_EN))
3506  break;
3507  udelay(10);
3508  }
3509  if (i < 0) txfailed = 1;
3510  i = STOP_TRIES;
3511  while (i-- > 0) {
3512  val = readl(cp->regs + REG_MAC_RX_CFG);
3513  if ((val & MAC_RX_CFG_EN)) {
3514  if (txfailed) {
3515  netdev_err(cp->dev,
3516  "enabling mac failed [tx:%08x:%08x]\n",
3519  }
3520  goto enable_rx_done;
3521  }
3522  udelay(10);
3523  }
3524  netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3525  (txfailed ? "tx,rx" : "rx"),
3528 
3529 enable_rx_done:
3530  cas_unmask_intr(cp); /* enable interrupts */
3531  writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3532  writel(0, cp->regs + REG_RX_COMP_TAIL);
3533 
3534  if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3535  if (N_RX_DESC_RINGS > 1)
3536  writel(RX_DESC_RINGN_SIZE(1) - 4,
3537  cp->regs + REG_PLUS_RX_KICK1);
3538 
3539  for (i = 1; i < N_RX_COMP_RINGS; i++)
3540  writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3541  }
3542 }
3543 
3544 /* Must be invoked under cp->lock. */
3545 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3546  int *pause)
3547 {
3548  u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3549  *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3550  *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3551  if (val & PCS_MII_LPA_ASYM_PAUSE)
3552  *pause |= 0x10;
3553  *spd = 1000;
3554 }
3555 
3556 /* Must be invoked under cp->lock. */
3557 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3558  int *pause)
3559 {
3560  u32 val;
3561 
3562  *fd = 0;
3563  *spd = 10;
3564  *pause = 0;
3565 
3566  /* use GMII registers */
3567  val = cas_phy_read(cp, MII_LPA);
3568  if (val & CAS_LPA_PAUSE)
3569  *pause = 0x01;
3570 
3571  if (val & CAS_LPA_ASYM_PAUSE)
3572  *pause |= 0x10;
3573 
3574  if (val & LPA_DUPLEX)
3575  *fd = 1;
3576  if (val & LPA_100)
3577  *spd = 100;
3578 
3579  if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3580  val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3581  if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3582  *spd = 1000;
3583  if (val & CAS_LPA_1000FULL)
3584  *fd = 1;
3585  }
3586 }
3587 
3588 /* A link-up condition has occurred, initialize and enable the
3589  * rest of the chip.
3590  *
3591  * Must be invoked under cp->lock.
3592  */
3593 static void cas_set_link_modes(struct cas *cp)
3594 {
3595  u32 val;
3596  int full_duplex, speed, pause;
3597 
3598  full_duplex = 0;
3599  speed = 10;
3600  pause = 0;
3601 
3602  if (CAS_PHY_MII(cp->phy_type)) {
3603  cas_mif_poll(cp, 0);
3604  val = cas_phy_read(cp, MII_BMCR);
3605  if (val & BMCR_ANENABLE) {
3606  cas_read_mii_link_mode(cp, &full_duplex, &speed,
3607  &pause);
3608  } else {
3609  if (val & BMCR_FULLDPLX)
3610  full_duplex = 1;
3611 
3612  if (val & BMCR_SPEED100)
3613  speed = 100;
3614  else if (val & CAS_BMCR_SPEED1000)
3615  speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3616  1000 : 100;
3617  }
3618  cas_mif_poll(cp, 1);
3619 
3620  } else {
3621  val = readl(cp->regs + REG_PCS_MII_CTRL);
3622  cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3623  if ((val & PCS_MII_AUTONEG_EN) == 0) {
3624  if (val & PCS_MII_CTRL_DUPLEX)
3625  full_duplex = 1;
3626  }
3627  }
3628 
3629  netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3630  speed, full_duplex ? "full" : "half");
3631 
3633  if (CAS_PHY_MII(cp->phy_type)) {
3635  if (!full_duplex)
3636  val |= MAC_XIF_DISABLE_ECHO;
3637  }
3638  if (full_duplex)
3639  val |= MAC_XIF_FDPLX_LED;
3640  if (speed == 1000)
3641  val |= MAC_XIF_GMII_MODE;
3642  writel(val, cp->regs + REG_MAC_XIF_CFG);
3643 
3644  /* deal with carrier and collision detect. */
3645  val = MAC_TX_CFG_IPG_EN;
3646  if (full_duplex) {
3648  val |= MAC_TX_CFG_IGNORE_COLL;
3649  } else {
3650 #ifndef USE_CSMA_CD_PROTO
3653 #endif
3654  }
3655  /* val now set up for REG_MAC_TX_CFG */
3656 
3657  /* If gigabit and half-duplex, enable carrier extension
3658  * mode. increase slot time to 512 bytes as well.
3659  * else, disable it and make sure slot time is 64 bytes.
3660  * also activate checksum bug workaround
3661  */
3662  if ((speed == 1000) && !full_duplex) {
3664  cp->regs + REG_MAC_TX_CFG);
3665 
3666  val = readl(cp->regs + REG_MAC_RX_CFG);
3667  val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3669  cp->regs + REG_MAC_RX_CFG);
3670 
3671  writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3672 
3673  cp->crc_size = 4;
3674  /* minimum size gigabit frame at half duplex */
3676 
3677  } else {
3678  writel(val, cp->regs + REG_MAC_TX_CFG);
3679 
3680  /* checksum bug workaround. don't strip FCS when in
3681  * half-duplex mode
3682  */
3683  val = readl(cp->regs + REG_MAC_RX_CFG);
3684  if (full_duplex) {
3685  val |= MAC_RX_CFG_STRIP_FCS;
3686  cp->crc_size = 0;
3688  } else {
3689  val &= ~MAC_RX_CFG_STRIP_FCS;
3690  cp->crc_size = 4;
3692  }
3694  cp->regs + REG_MAC_RX_CFG);
3695  writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3696  }
3697 
3698  if (netif_msg_link(cp)) {
3699  if (pause & 0x01) {
3700  netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3701  cp->rx_fifo_size,
3702  cp->rx_pause_off,
3703  cp->rx_pause_on);
3704  } else if (pause & 0x10) {
3705  netdev_info(cp->dev, "TX pause enabled\n");
3706  } else {
3707  netdev_info(cp->dev, "Pause is disabled\n");
3708  }
3709  }
3710 
3711  val = readl(cp->regs + REG_MAC_CTRL_CFG);
3713  if (pause) { /* symmetric or asymmetric pause */
3715  if (pause & 0x01) { /* symmetric pause */
3717  }
3718  }
3719  writel(val, cp->regs + REG_MAC_CTRL_CFG);
3720  cas_start_dma(cp);
3721 }
3722 
3723 /* Must be invoked under cp->lock. */
3724 static void cas_init_hw(struct cas *cp, int restart_link)
3725 {
3726  if (restart_link)
3727  cas_phy_init(cp);
3728 
3729  cas_init_pause_thresholds(cp);
3730  cas_init_mac(cp);
3731  cas_init_dma(cp);
3732 
3733  if (restart_link) {
3734  /* Default aneg parameters */
3735  cp->timer_ticks = 0;
3736  cas_begin_auto_negotiation(cp, NULL);
3737  } else if (cp->lstate == link_up) {
3738  cas_set_link_modes(cp);
3739  netif_carrier_on(cp->dev);
3740  }
3741 }
3742 
3743 /* Must be invoked under cp->lock. on earlier cassini boards,
3744  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3745  * let it settle out, and then restore pci state.
3746  */
3747 static void cas_hard_reset(struct cas *cp)
3748 {
3750  udelay(20);
3751  pci_restore_state(cp->pdev);
3752 }
3753 
3754 
3755 static void cas_global_reset(struct cas *cp, int blkflag)
3756 {
3757  int limit;
3758 
3759  /* issue a global reset. don't use RSTOUT. */
3760  if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3761  /* For PCS, when the blkflag is set, we should set the
3762  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3763  * the last autonegotiation from being cleared. We'll
3764  * need some special handling if the chip is set into a
3765  * loopback mode.
3766  */
3768  cp->regs + REG_SW_RESET);
3769  } else {
3771  }
3772 
3773  /* need to wait at least 3ms before polling register */
3774  mdelay(3);
3775 
3776  limit = STOP_TRIES;
3777  while (limit-- > 0) {
3778  u32 val = readl(cp->regs + REG_SW_RESET);
3779  if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3780  goto done;
3781  udelay(10);
3782  }
3783  netdev_err(cp->dev, "sw reset failed\n");
3784 
3785 done:
3786  /* enable various BIM interrupts */
3789 
3790  /* clear out pci error status mask for handled errors.
3791  * we don't deal with DMA counter overflows as they happen
3792  * all the time.
3793  */
3794  writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3795  PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3796  PCI_ERR_BIM_DMA_READ), cp->regs +
3798 
3799  /* set up for MII by default to address mac rx reset timeout
3800  * issue
3801  */
3803 }
3804 
3805 static void cas_reset(struct cas *cp, int blkflag)
3806 {
3807  u32 val;
3808 
3809  cas_mask_intr(cp);
3810  cas_global_reset(cp, blkflag);
3811  cas_mac_reset(cp);
3812  cas_entropy_reset(cp);
3813 
3814  /* disable dma engines. */
3815  val = readl(cp->regs + REG_TX_CFG);
3816  val &= ~TX_CFG_DMA_EN;
3817  writel(val, cp->regs + REG_TX_CFG);
3818 
3819  val = readl(cp->regs + REG_RX_CFG);
3820  val &= ~RX_CFG_DMA_EN;
3821  writel(val, cp->regs + REG_RX_CFG);
3822 
3823  /* program header parser */
3824  if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3825  (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3826  cas_load_firmware(cp, CAS_HP_FIRMWARE);
3827  } else {
3828  cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3829  }
3830 
3831  /* clear out error registers */
3832  spin_lock(&cp->stat_lock[N_TX_RINGS]);
3833  cas_clear_mac_err(cp);
3834  spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3835 }
3836 
3837 /* Shut down the chip, must be called with pm_mutex held. */
3838 static void cas_shutdown(struct cas *cp)
3839 {
3840  unsigned long flags;
3841 
3842  /* Make us not-running to avoid timers respawning */
3843  cp->hw_running = 0;
3844 
3845  del_timer_sync(&cp->link_timer);
3846 
3847  /* Stop the reset task */
3848 #if 0
3849  while (atomic_read(&cp->reset_task_pending_mtu) ||
3852  schedule();
3853 
3854 #else
3855  while (atomic_read(&cp->reset_task_pending))
3856  schedule();
3857 #endif
3858  /* Actually stop the chip */
3859  cas_lock_all_save(cp, flags);
3860  cas_reset(cp, 0);
3861  if (cp->cas_flags & CAS_FLAG_SATURN)
3862  cas_phy_powerdown(cp);
3863  cas_unlock_all_restore(cp, flags);
3864 }
3865 
3866 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3867 {
3868  struct cas *cp = netdev_priv(dev);
3869 
3870  if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3871  return -EINVAL;
3872 
3873  dev->mtu = new_mtu;
3874  if (!netif_running(dev) || !netif_device_present(dev))
3875  return 0;
3876 
3877  /* let the reset task handle it */
3878 #if 1
3880  if ((cp->phy_type & CAS_PHY_SERDES)) {
3882  } else {
3884  }
3885  schedule_work(&cp->reset_task);
3886 #else
3888  CAS_RESET_ALL : CAS_RESET_MTU);
3889  pr_err("reset called in cas_change_mtu\n");
3890  schedule_work(&cp->reset_task);
3891 #endif
3892 
3893  flush_work(&cp->reset_task);
3894  return 0;
3895 }
3896 
3897 static void cas_clean_txd(struct cas *cp, int ring)
3898 {
3899  struct cas_tx_desc *txd = cp->init_txds[ring];
3900  struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3901  u64 daddr, dlen;
3902  int i, size;
3903 
3904  size = TX_DESC_RINGN_SIZE(ring);
3905  for (i = 0; i < size; i++) {
3906  int frag;
3907 
3908  if (skbs[i] == NULL)
3909  continue;
3910 
3911  skb = skbs[i];
3912  skbs[i] = NULL;
3913 
3914  for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3915  int ent = i & (size - 1);
3916 
3917  /* first buffer is never a tiny buffer and so
3918  * needs to be unmapped.
3919  */
3920  daddr = le64_to_cpu(txd[ent].buffer);
3921  dlen = CAS_VAL(TX_DESC_BUFLEN,
3922  le64_to_cpu(txd[ent].control));
3923  pci_unmap_page(cp->pdev, daddr, dlen,
3925 
3926  if (frag != skb_shinfo(skb)->nr_frags) {
3927  i++;
3928 
3929  /* next buffer might by a tiny buffer.
3930  * skip past it.
3931  */
3932  ent = i & (size - 1);
3933  if (cp->tx_tiny_use[ring][ent].used)
3934  i++;
3935  }
3936  }
3937  dev_kfree_skb_any(skb);
3938  }
3939 
3940  /* zero out tiny buf usage */
3941  memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3942 }
3943 
3944 /* freed on close */
3945 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3946 {
3947  cas_page_t **page = cp->rx_pages[ring];
3948  int i, size;
3949 
3950  size = RX_DESC_RINGN_SIZE(ring);
3951  for (i = 0; i < size; i++) {
3952  if (page[i]) {
3953  cas_page_free(cp, page[i]);
3954  page[i] = NULL;
3955  }
3956  }
3957 }
3958 
3959 static void cas_free_rxds(struct cas *cp)
3960 {
3961  int i;
3962 
3963  for (i = 0; i < N_RX_DESC_RINGS; i++)
3964  cas_free_rx_desc(cp, i);
3965 }
3966 
3967 /* Must be invoked under cp->lock. */
3968 static void cas_clean_rings(struct cas *cp)
3969 {
3970  int i;
3971 
3972  /* need to clean all tx rings */
3973  memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3974  memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3975  for (i = 0; i < N_TX_RINGS; i++)
3976  cas_clean_txd(cp, i);
3977 
3978  /* zero out init block */
3979  memset(cp->init_block, 0, sizeof(struct cas_init_block));
3980  cas_clean_rxds(cp);
3981  cas_clean_rxcs(cp);
3982 }
3983 
3984 /* allocated on open */
3985 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3986 {
3987  cas_page_t **page = cp->rx_pages[ring];
3988  int size, i = 0;
3989 
3990  size = RX_DESC_RINGN_SIZE(ring);
3991  for (i = 0; i < size; i++) {
3992  if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3993  return -1;
3994  }
3995  return 0;
3996 }
3997 
3998 static int cas_alloc_rxds(struct cas *cp)
3999 {
4000  int i;
4001 
4002  for (i = 0; i < N_RX_DESC_RINGS; i++) {
4003  if (cas_alloc_rx_desc(cp, i) < 0) {
4004  cas_free_rxds(cp);
4005  return -1;
4006  }
4007  }
4008  return 0;
4009 }
4010 
4011 static void cas_reset_task(struct work_struct *work)
4012 {
4013  struct cas *cp = container_of(work, struct cas, reset_task);
4014 #if 0
4015  int pending = atomic_read(&cp->reset_task_pending);
4016 #else
4017  int pending_all = atomic_read(&cp->reset_task_pending_all);
4018  int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4019  int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4020 
4021  if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4022  /* We can have more tasks scheduled than actually
4023  * needed.
4024  */
4026  return;
4027  }
4028 #endif
4029  /* The link went down, we reset the ring, but keep
4030  * DMA stopped. Use this function for reset
4031  * on error as well.
4032  */
4033  if (cp->hw_running) {
4034  unsigned long flags;
4035 
4036  /* Make sure we don't get interrupts or tx packets */
4037  netif_device_detach(cp->dev);
4038  cas_lock_all_save(cp, flags);
4039 
4040  if (cp->opened) {
4041  /* We call cas_spare_recover when we call cas_open.
4042  * but we do not initialize the lists cas_spare_recover
4043  * uses until cas_open is called.
4044  */
4045  cas_spare_recover(cp, GFP_ATOMIC);
4046  }
4047 #if 1
4048  /* test => only pending_spare set */
4049  if (!pending_all && !pending_mtu)
4050  goto done;
4051 #else
4052  if (pending == CAS_RESET_SPARE)
4053  goto done;
4054 #endif
4055  /* when pending == CAS_RESET_ALL, the following
4056  * call to cas_init_hw will restart auto negotiation.
4057  * Setting the second argument of cas_reset to
4058  * !(pending == CAS_RESET_ALL) will set this argument
4059  * to 1 (avoiding reinitializing the PHY for the normal
4060  * PCS case) when auto negotiation is not restarted.
4061  */
4062 #if 1
4063  cas_reset(cp, !(pending_all > 0));
4064  if (cp->opened)
4065  cas_clean_rings(cp);
4066  cas_init_hw(cp, (pending_all > 0));
4067 #else
4068  cas_reset(cp, !(pending == CAS_RESET_ALL));
4069  if (cp->opened)
4070  cas_clean_rings(cp);
4071  cas_init_hw(cp, pending == CAS_RESET_ALL);
4072 #endif
4073 
4074 done:
4075  cas_unlock_all_restore(cp, flags);
4076  netif_device_attach(cp->dev);
4077  }
4078 #if 1
4079  atomic_sub(pending_all, &cp->reset_task_pending_all);
4080  atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4081  atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4083 #else
4084  atomic_set(&cp->reset_task_pending, 0);
4085 #endif
4086 }
4087 
4088 static void cas_link_timer(unsigned long data)
4089 {
4090  struct cas *cp = (struct cas *) data;
4091  int mask, pending = 0, reset = 0;
4092  unsigned long flags;
4093 
4094  if (link_transition_timeout != 0 &&
4096  ((jiffies - cp->link_transition_jiffies) >
4097  (link_transition_timeout))) {
4098  /* One-second counter so link-down workaround doesn't
4099  * cause resets to occur so fast as to fool the switch
4100  * into thinking the link is down.
4101  */
4103  }
4104 
4105  if (!cp->hw_running)
4106  return;
4107 
4108  spin_lock_irqsave(&cp->lock, flags);
4109  cas_lock_tx(cp);
4110  cas_entropy_gather(cp);
4111 
4112  /* If the link task is still pending, we just
4113  * reschedule the link timer
4114  */
4115 #if 1
4116  if (atomic_read(&cp->reset_task_pending_all) ||
4119  goto done;
4120 #else
4121  if (atomic_read(&cp->reset_task_pending))
4122  goto done;
4123 #endif
4124 
4125  /* check for rx cleaning */
4126  if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4127  int i, rmask;
4128 
4129  for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4130  rmask = CAS_FLAG_RXD_POST(i);
4131  if ((mask & rmask) == 0)
4132  continue;
4133 
4134  /* post_rxds will do a mod_timer */
4135  if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4136  pending = 1;
4137  continue;
4138  }
4139  cp->cas_flags &= ~rmask;
4140  }
4141  }
4142 
4143  if (CAS_PHY_MII(cp->phy_type)) {
4144  u16 bmsr;
4145  cas_mif_poll(cp, 0);
4146  bmsr = cas_phy_read(cp, MII_BMSR);
4147  /* WTZ: Solaris driver reads this twice, but that
4148  * may be due to the PCS case and the use of a
4149  * common implementation. Read it twice here to be
4150  * safe.
4151  */
4152  bmsr = cas_phy_read(cp, MII_BMSR);
4153  cas_mif_poll(cp, 1);
4154  readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4155  reset = cas_mii_link_check(cp, bmsr);
4156  } else {
4157  reset = cas_pcs_link_check(cp);
4158  }
4159 
4160  if (reset)
4161  goto done;
4162 
4163  /* check for tx state machine confusion */
4164  if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4165  u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4166  u32 wptr, rptr;
4167  int tlm = CAS_VAL(MAC_SM_TLM, val);
4168 
4169  if (((tlm == 0x5) || (tlm == 0x3)) &&
4170  (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4171  netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4172  "tx err: MAC_STATE[%08x]\n", val);
4173  reset = 1;
4174  goto done;
4175  }
4176 
4177  val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4178  wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4179  rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4180  if ((val == 0) && (wptr != rptr)) {
4181  netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4182  "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4183  val, wptr, rptr);
4184  reset = 1;
4185  }
4186 
4187  if (reset)
4188  cas_hard_reset(cp);
4189  }
4190 
4191 done:
4192  if (reset) {
4193 #if 1
4196  schedule_work(&cp->reset_task);
4197 #else
4198  atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4199  pr_err("reset called in cas_link_timer\n");
4200  schedule_work(&cp->reset_task);
4201 #endif
4202  }
4203 
4204  if (!pending)
4205  mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4206  cas_unlock_tx(cp);
4207  spin_unlock_irqrestore(&cp->lock, flags);
4208 }
4209 
4210 /* tiny buffers are used to avoid target abort issues with
4211  * older cassini's
4212  */
4213 static void cas_tx_tiny_free(struct cas *cp)
4214 {
4215  struct pci_dev *pdev = cp->pdev;
4216  int i;
4217 
4218  for (i = 0; i < N_TX_RINGS; i++) {
4219  if (!cp->tx_tiny_bufs[i])
4220  continue;
4221 
4223  cp->tx_tiny_bufs[i],
4224  cp->tx_tiny_dvma[i]);
4225  cp->tx_tiny_bufs[i] = NULL;
4226  }
4227 }
4228 
4229 static int cas_tx_tiny_alloc(struct cas *cp)
4230 {
4231  struct pci_dev *pdev = cp->pdev;
4232  int i;
4233 
4234  for (i = 0; i < N_TX_RINGS; i++) {
4235  cp->tx_tiny_bufs[i] =
4237  &cp->tx_tiny_dvma[i]);
4238  if (!cp->tx_tiny_bufs[i]) {
4239  cas_tx_tiny_free(cp);
4240  return -1;
4241  }
4242  }
4243  return 0;
4244 }
4245 
4246 
4247 static int cas_open(struct net_device *dev)
4248 {
4249  struct cas *cp = netdev_priv(dev);
4250  int hw_was_up, err;
4251  unsigned long flags;
4252 
4253  mutex_lock(&cp->pm_mutex);
4254 
4255  hw_was_up = cp->hw_running;
4256 
4257  /* The power-management mutex protects the hw_running
4258  * etc. state so it is safe to do this bit without cp->lock
4259  */
4260  if (!cp->hw_running) {
4261  /* Reset the chip */
4262  cas_lock_all_save(cp, flags);
4263  /* We set the second arg to cas_reset to zero
4264  * because cas_init_hw below will have its second
4265  * argument set to non-zero, which will force
4266  * autonegotiation to start.
4267  */
4268  cas_reset(cp, 0);
4269  cp->hw_running = 1;
4270  cas_unlock_all_restore(cp, flags);
4271  }
4272 
4273  err = -ENOMEM;
4274  if (cas_tx_tiny_alloc(cp) < 0)
4275  goto err_unlock;
4276 
4277  /* alloc rx descriptors */
4278  if (cas_alloc_rxds(cp) < 0)
4279  goto err_tx_tiny;
4280 
4281  /* allocate spares */
4282  cas_spare_init(cp);
4283  cas_spare_recover(cp, GFP_KERNEL);
4284 
4285  /* We can now request the interrupt as we know it's masked
4286  * on the controller. cassini+ has up to 4 interrupts
4287  * that can be used, but you need to do explicit pci interrupt
4288  * mapping to expose them
4289  */
4290  if (request_irq(cp->pdev->irq, cas_interrupt,
4291  IRQF_SHARED, dev->name, (void *) dev)) {
4292  netdev_err(cp->dev, "failed to request irq !\n");
4293  err = -EAGAIN;
4294  goto err_spare;
4295  }
4296 
4297 #ifdef USE_NAPI
4298  napi_enable(&cp->napi);
4299 #endif
4300  /* init hw */
4301  cas_lock_all_save(cp, flags);
4302  cas_clean_rings(cp);
4303  cas_init_hw(cp, !hw_was_up);
4304  cp->opened = 1;
4305  cas_unlock_all_restore(cp, flags);
4306 
4307  netif_start_queue(dev);
4308  mutex_unlock(&cp->pm_mutex);
4309  return 0;
4310 
4311 err_spare:
4312  cas_spare_free(cp);
4313  cas_free_rxds(cp);
4314 err_tx_tiny:
4315  cas_tx_tiny_free(cp);
4316 err_unlock:
4317  mutex_unlock(&cp->pm_mutex);
4318  return err;
4319 }
4320 
4321 static int cas_close(struct net_device *dev)
4322 {
4323  unsigned long flags;
4324  struct cas *cp = netdev_priv(dev);
4325 
4326 #ifdef USE_NAPI
4327  napi_disable(&cp->napi);
4328 #endif
4329  /* Make sure we don't get distracted by suspend/resume */
4330  mutex_lock(&cp->pm_mutex);
4331 
4332  netif_stop_queue(dev);
4333 
4334  /* Stop traffic, mark us closed */
4335  cas_lock_all_save(cp, flags);
4336  cp->opened = 0;
4337  cas_reset(cp, 0);
4338  cas_phy_init(cp);
4339  cas_begin_auto_negotiation(cp, NULL);
4340  cas_clean_rings(cp);
4341  cas_unlock_all_restore(cp, flags);
4342 
4343  free_irq(cp->pdev->irq, (void *) dev);
4344  cas_spare_free(cp);
4345  cas_free_rxds(cp);
4346  cas_tx_tiny_free(cp);
4347  mutex_unlock(&cp->pm_mutex);
4348  return 0;
4349 }
4350 
4351 static struct {
4352  const char name[ETH_GSTRING_LEN];
4353 } ethtool_cassini_statnames[] = {
4354  {"collisions"},
4355  {"rx_bytes"},
4356  {"rx_crc_errors"},
4357  {"rx_dropped"},
4358  {"rx_errors"},
4359  {"rx_fifo_errors"},
4360  {"rx_frame_errors"},
4361  {"rx_length_errors"},
4362  {"rx_over_errors"},
4363  {"rx_packets"},
4364  {"tx_aborted_errors"},
4365  {"tx_bytes"},
4366  {"tx_dropped"},
4367  {"tx_errors"},
4368  {"tx_fifo_errors"},
4369  {"tx_packets"}
4370 };
4371 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4372 
4373 static struct {
4374  const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4375 } ethtool_register_table[] = {
4376  {-MII_BMSR},
4377  {-MII_BMCR},
4378  {REG_CAWR},
4379  {REG_INF_BURST},
4380  {REG_BIM_CFG},
4381  {REG_RX_CFG},
4382  {REG_HP_CFG},
4383  {REG_MAC_TX_CFG},
4384  {REG_MAC_RX_CFG},
4385  {REG_MAC_CTRL_CFG},
4386  {REG_MAC_XIF_CFG},
4387  {REG_MIF_CFG},
4388  {REG_PCS_CFG},
4389  {REG_SATURN_PCFG},
4394 };
4395 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4396 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4397 
4398 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4399 {
4400  u8 *p;
4401  int i;
4402  unsigned long flags;
4403 
4404  spin_lock_irqsave(&cp->lock, flags);
4405  for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4406  u16 hval;
4407  u32 val;
4408  if (ethtool_register_table[i].offsets < 0) {
4409  hval = cas_phy_read(cp,
4410  -ethtool_register_table[i].offsets);
4411  val = hval;
4412  } else {
4413  val= readl(cp->regs+ethtool_register_table[i].offsets);
4414  }
4415  memcpy(p, (u8 *)&val, sizeof(u32));
4416  }
4417  spin_unlock_irqrestore(&cp->lock, flags);
4418 }
4419 
4420 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4421 {
4422  struct cas *cp = netdev_priv(dev);
4423  struct net_device_stats *stats = cp->net_stats;
4424  unsigned long flags;
4425  int i;
4426  unsigned long tmp;
4427 
4428  /* we collate all of the stats into net_stats[N_TX_RING] */
4429  if (!cp->hw_running)
4430  return stats + N_TX_RINGS;
4431 
4432  /* collect outstanding stats */
4433  /* WTZ: the Cassini spec gives these as 16 bit counters but
4434  * stored in 32-bit words. Added a mask of 0xffff to be safe,
4435  * in case the chip somehow puts any garbage in the other bits.
4436  * Also, counter usage didn't seem to mach what Adrian did
4437  * in the parts of the code that set these quantities. Made
4438  * that consistent.
4439  */
4440  spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4441  stats[N_TX_RINGS].rx_crc_errors +=
4442  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4443  stats[N_TX_RINGS].rx_frame_errors +=
4444  readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4445  stats[N_TX_RINGS].rx_length_errors +=
4446  readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4447 #if 1
4448  tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4449  (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4450  stats[N_TX_RINGS].tx_aborted_errors += tmp;
4451  stats[N_TX_RINGS].collisions +=
4452  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4453 #else
4454  stats[N_TX_RINGS].tx_aborted_errors +=
4457  readl(cp->regs + REG_MAC_COLL_LATE);
4458 #endif
4459  cas_clear_mac_err(cp);
4460 
4461  /* saved bits that are unique to ring 0 */
4462  spin_lock(&cp->stat_lock[0]);
4463  stats[N_TX_RINGS].collisions += stats[0].collisions;
4464  stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4465  stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4466  stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4467  stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4468  stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4469  spin_unlock(&cp->stat_lock[0]);
4470 
4471  for (i = 0; i < N_TX_RINGS; i++) {
4472  spin_lock(&cp->stat_lock[i]);
4473  stats[N_TX_RINGS].rx_length_errors +=
4474  stats[i].rx_length_errors;
4475  stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4476  stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4477  stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4478  stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4479  stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4480  stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4481  stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4482  stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4483  stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4484  memset(stats + i, 0, sizeof(struct net_device_stats));
4485  spin_unlock(&cp->stat_lock[i]);
4486  }
4487  spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4488  return stats + N_TX_RINGS;
4489 }
4490 
4491 
4492 static void cas_set_multicast(struct net_device *dev)
4493 {
4494  struct cas *cp = netdev_priv(dev);
4495  u32 rxcfg, rxcfg_new;
4496  unsigned long flags;
4497  int limit = STOP_TRIES;
4498 
4499  if (!cp->hw_running)
4500  return;
4501 
4502  spin_lock_irqsave(&cp->lock, flags);
4503  rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4504 
4505  /* disable RX MAC and wait for completion */
4506  writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4507  while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4508  if (!limit--)
4509  break;
4510  udelay(10);
4511  }
4512 
4513  /* disable hash filter and wait for completion */
4514  limit = STOP_TRIES;
4516  writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4518  if (!limit--)
4519  break;
4520  udelay(10);
4521  }
4522 
4523  /* program hash filters */
4524  cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4525  rxcfg |= rxcfg_new;
4526  writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4527  spin_unlock_irqrestore(&cp->lock, flags);
4528 }
4529 
4530 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4531 {
4532  struct cas *cp = netdev_priv(dev);
4533  strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4534  strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4535  strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4536  info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4537  cp->casreg_len : CAS_MAX_REGS;
4538  info->n_stats = CAS_NUM_STAT_KEYS;
4539 }
4540 
4541 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4542 {
4543  struct cas *cp = netdev_priv(dev);
4544  u16 bmcr;
4545  int full_duplex, speed, pause;
4546  unsigned long flags;
4547  enum link_state linkstate = link_up;
4548 
4549  cmd->advertising = 0;
4551  if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4554  }
4555 
4556  /* Record PHY settings if HW is on. */
4557  spin_lock_irqsave(&cp->lock, flags);
4558  bmcr = 0;
4559  linkstate = cp->lstate;
4560  if (CAS_PHY_MII(cp->phy_type)) {
4561  cmd->port = PORT_MII;
4562  cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4564  cmd->phy_address = cp->phy_addr;
4570 
4571  cmd->supported |=
4577 
4578  if (cp->hw_running) {
4579  cas_mif_poll(cp, 0);
4580  bmcr = cas_phy_read(cp, MII_BMCR);
4581  cas_read_mii_link_mode(cp, &full_duplex,
4582  &speed, &pause);
4583  cas_mif_poll(cp, 1);
4584  }
4585 
4586  } else {
4587  cmd->port = PORT_FIBRE;
4588  cmd->transceiver = XCVR_INTERNAL;
4589  cmd->phy_address = 0;
4590  cmd->supported |= SUPPORTED_FIBRE;
4591  cmd->advertising |= ADVERTISED_FIBRE;
4592 
4593  if (cp->hw_running) {
4594  /* pcs uses the same bits as mii */
4595  bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4596  cas_read_pcs_link_mode(cp, &full_duplex,
4597  &speed, &pause);
4598  }
4599  }
4600  spin_unlock_irqrestore(&cp->lock, flags);
4601 
4602  if (bmcr & BMCR_ANENABLE) {
4604  cmd->autoneg = AUTONEG_ENABLE;
4605  ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4606  SPEED_10 :
4607  ((speed == 1000) ?
4608  SPEED_1000 : SPEED_100)));
4609  cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4610  } else {
4611  cmd->autoneg = AUTONEG_DISABLE;
4612  ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4613  SPEED_1000 :
4614  ((bmcr & BMCR_SPEED100) ?
4615  SPEED_100 : SPEED_10)));
4616  cmd->duplex =
4617  (bmcr & BMCR_FULLDPLX) ?
4619  }
4620  if (linkstate != link_up) {
4621  /* Force these to "unknown" if the link is not up and
4622  * autonogotiation in enabled. We can set the link
4623  * speed to 0, but not cmd->duplex,
4624  * because its legal values are 0 and 1. Ethtool will
4625  * print the value reported in parentheses after the
4626  * word "Unknown" for unrecognized values.
4627  *
4628  * If in forced mode, we report the speed and duplex
4629  * settings that we configured.
4630  */
4631  if (cp->link_cntl & BMCR_ANENABLE) {
4632  ethtool_cmd_speed_set(cmd, 0);
4633  cmd->duplex = 0xff;
4634  } else {
4635  ethtool_cmd_speed_set(cmd, SPEED_10);
4636  if (cp->link_cntl & BMCR_SPEED100) {
4637  ethtool_cmd_speed_set(cmd, SPEED_100);
4638  } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4639  ethtool_cmd_speed_set(cmd, SPEED_1000);
4640  }
4641  cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4643  }
4644  }
4645  return 0;
4646 }
4647 
4648 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4649 {
4650  struct cas *cp = netdev_priv(dev);
4651  unsigned long flags;
4652  u32 speed = ethtool_cmd_speed(cmd);
4653 
4654  /* Verify the settings we care about. */
4655  if (cmd->autoneg != AUTONEG_ENABLE &&
4656  cmd->autoneg != AUTONEG_DISABLE)
4657  return -EINVAL;
4658 
4659  if (cmd->autoneg == AUTONEG_DISABLE &&
4660  ((speed != SPEED_1000 &&
4661  speed != SPEED_100 &&
4662  speed != SPEED_10) ||
4663  (cmd->duplex != DUPLEX_HALF &&
4664  cmd->duplex != DUPLEX_FULL)))
4665  return -EINVAL;
4666 
4667  /* Apply settings and restart link process. */
4668  spin_lock_irqsave(&cp->lock, flags);
4669  cas_begin_auto_negotiation(cp, cmd);
4670  spin_unlock_irqrestore(&cp->lock, flags);
4671  return 0;
4672 }
4673 
4674 static int cas_nway_reset(struct net_device *dev)
4675 {
4676  struct cas *cp = netdev_priv(dev);
4677  unsigned long flags;
4678 
4679  if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4680  return -EINVAL;
4681 
4682  /* Restart link process. */
4683  spin_lock_irqsave(&cp->lock, flags);
4684  cas_begin_auto_negotiation(cp, NULL);
4685  spin_unlock_irqrestore(&cp->lock, flags);
4686 
4687  return 0;
4688 }
4689 
4690 static u32 cas_get_link(struct net_device *dev)
4691 {
4692  struct cas *cp = netdev_priv(dev);
4693  return cp->lstate == link_up;
4694 }
4695 
4696 static u32 cas_get_msglevel(struct net_device *dev)
4697 {
4698  struct cas *cp = netdev_priv(dev);
4699  return cp->msg_enable;
4700 }
4701 
4702 static void cas_set_msglevel(struct net_device *dev, u32 value)
4703 {
4704  struct cas *cp = netdev_priv(dev);
4705  cp->msg_enable = value;
4706 }
4707 
4708 static int cas_get_regs_len(struct net_device *dev)
4709 {
4710  struct cas *cp = netdev_priv(dev);
4711  return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4712 }
4713 
4714 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4715  void *p)
4716 {
4717  struct cas *cp = netdev_priv(dev);
4718  regs->version = 0;
4719  /* cas_read_regs handles locks (cp->lock). */
4720  cas_read_regs(cp, p, regs->len / sizeof(u32));
4721 }
4722 
4723 static int cas_get_sset_count(struct net_device *dev, int sset)
4724 {
4725  switch (sset) {
4726  case ETH_SS_STATS:
4727  return CAS_NUM_STAT_KEYS;
4728  default:
4729  return -EOPNOTSUPP;
4730  }
4731 }
4732 
4733 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4734 {
4735  memcpy(data, &ethtool_cassini_statnames,
4737 }
4738 
4739 static void cas_get_ethtool_stats(struct net_device *dev,
4740  struct ethtool_stats *estats, u64 *data)
4741 {
4742  struct cas *cp = netdev_priv(dev);
4743  struct net_device_stats *stats = cas_get_stats(cp->dev);
4744  int i = 0;
4745  data[i++] = stats->collisions;
4746  data[i++] = stats->rx_bytes;
4747  data[i++] = stats->rx_crc_errors;
4748  data[i++] = stats->rx_dropped;
4749  data[i++] = stats->rx_errors;
4750  data[i++] = stats->rx_fifo_errors;
4751  data[i++] = stats->rx_frame_errors;
4752  data[i++] = stats->rx_length_errors;
4753  data[i++] = stats->rx_over_errors;
4754  data[i++] = stats->rx_packets;
4755  data[i++] = stats->tx_aborted_errors;
4756  data[i++] = stats->tx_bytes;
4757  data[i++] = stats->tx_dropped;
4758  data[i++] = stats->tx_errors;
4759  data[i++] = stats->tx_fifo_errors;
4760  data[i++] = stats->tx_packets;
4761  BUG_ON(i != CAS_NUM_STAT_KEYS);
4762 }
4763 
4764 static const struct ethtool_ops cas_ethtool_ops = {
4765  .get_drvinfo = cas_get_drvinfo,
4766  .get_settings = cas_get_settings,
4767  .set_settings = cas_set_settings,
4768  .nway_reset = cas_nway_reset,
4769  .get_link = cas_get_link,
4770  .get_msglevel = cas_get_msglevel,
4771  .set_msglevel = cas_set_msglevel,
4772  .get_regs_len = cas_get_regs_len,
4773  .get_regs = cas_get_regs,
4774  .get_sset_count = cas_get_sset_count,
4775  .get_strings = cas_get_strings,
4776  .get_ethtool_stats = cas_get_ethtool_stats,
4777 };
4778 
4779 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4780 {
4781  struct cas *cp = netdev_priv(dev);
4782  struct mii_ioctl_data *data = if_mii(ifr);
4783  unsigned long flags;
4784  int rc = -EOPNOTSUPP;
4785 
4786  /* Hold the PM mutex while doing ioctl's or we may collide
4787  * with open/close and power management and oops.
4788  */
4789  mutex_lock(&cp->pm_mutex);
4790  switch (cmd) {
4791  case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4792  data->phy_id = cp->phy_addr;
4793  /* Fallthrough... */
4794 
4795  case SIOCGMIIREG: /* Read MII PHY register. */
4796  spin_lock_irqsave(&cp->lock, flags);
4797  cas_mif_poll(cp, 0);
4798  data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4799  cas_mif_poll(cp, 1);
4800  spin_unlock_irqrestore(&cp->lock, flags);
4801  rc = 0;
4802  break;
4803 
4804  case SIOCSMIIREG: /* Write MII PHY register. */
4805  spin_lock_irqsave(&cp->lock, flags);
4806  cas_mif_poll(cp, 0);
4807  rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4808  cas_mif_poll(cp, 1);
4809  spin_unlock_irqrestore(&cp->lock, flags);
4810  break;
4811  default:
4812  break;
4813  }
4814 
4815  mutex_unlock(&cp->pm_mutex);
4816  return rc;
4817 }
4818 
4819 /* When this chip sits underneath an Intel 31154 bridge, it is the
4820  * only subordinate device and we can tweak the bridge settings to
4821  * reflect that fact.
4822  */
4823 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4824 {
4825  struct pci_dev *pdev = cas_pdev->bus->self;
4826  u32 val;
4827 
4828  if (!pdev)
4829  return;
4830 
4831  if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4832  return;
4833 
4834  /* Clear bit 10 (Bus Parking Control) in the Secondary
4835  * Arbiter Control/Status Register which lives at offset
4836  * 0x41. Using a 32-bit word read/modify/write at 0x40
4837  * is much simpler so that's how we do this.
4838  */
4839  pci_read_config_dword(pdev, 0x40, &val);
4840  val &= ~0x00040000;
4841  pci_write_config_dword(pdev, 0x40, val);
4842 
4843  /* Max out the Multi-Transaction Timer settings since
4844  * Cassini is the only device present.
4845  *
4846  * The register is 16-bit and lives at 0x50. When the
4847  * settings are enabled, it extends the GRANT# signal
4848  * for a requestor after a transaction is complete. This
4849  * allows the next request to run without first needing
4850  * to negotiate the GRANT# signal back.
4851  *
4852  * Bits 12:10 define the grant duration:
4853  *
4854  * 1 -- 16 clocks
4855  * 2 -- 32 clocks
4856  * 3 -- 64 clocks
4857  * 4 -- 128 clocks
4858  * 5 -- 256 clocks
4859  *
4860  * All other values are illegal.
4861  *
4862  * Bits 09:00 define which REQ/GNT signal pairs get the
4863  * GRANT# signal treatment. We set them all.
4864  */
4865  pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4866 
4867  /* The Read Prefecth Policy register is 16-bit and sits at
4868  * offset 0x52. It enables a "smart" pre-fetch policy. We
4869  * enable it and max out all of the settings since only one
4870  * device is sitting underneath and thus bandwidth sharing is
4871  * not an issue.
4872  *
4873  * The register has several 3 bit fields, which indicates a
4874  * multiplier applied to the base amount of prefetching the
4875  * chip would do. These fields are at:
4876  *
4877  * 15:13 --- ReRead Primary Bus
4878  * 12:10 --- FirstRead Primary Bus
4879  * 09:07 --- ReRead Secondary Bus
4880  * 06:04 --- FirstRead Secondary Bus
4881  *
4882  * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4883  * get enabled on. Bit 3 is a grouped enabler which controls
4884  * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4885  * the individual REQ/GNT pairs [2:0].
4886  */
4887  pci_write_config_word(pdev, 0x52,
4888  (0x7 << 13) |
4889  (0x7 << 10) |
4890  (0x7 << 7) |
4891  (0x7 << 4) |
4892  (0xf << 0));
4893 
4894  /* Force cacheline size to 0x8 */
4895  pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4896 
4897  /* Force latency timer to maximum setting so Cassini can
4898  * sit on the bus as long as it likes.
4899  */
4900  pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4901 }
4902 
4903 static const struct net_device_ops cas_netdev_ops = {
4904  .ndo_open = cas_open,
4905  .ndo_stop = cas_close,
4906  .ndo_start_xmit = cas_start_xmit,
4907  .ndo_get_stats = cas_get_stats,
4908  .ndo_set_rx_mode = cas_set_multicast,
4909  .ndo_do_ioctl = cas_ioctl,
4910  .ndo_tx_timeout = cas_tx_timeout,
4911  .ndo_change_mtu = cas_change_mtu,
4912  .ndo_set_mac_address = eth_mac_addr,
4913  .ndo_validate_addr = eth_validate_addr,
4914 #ifdef CONFIG_NET_POLL_CONTROLLER
4915  .ndo_poll_controller = cas_netpoll,
4916 #endif
4917 };
4918 
4919 static int __devinit cas_init_one(struct pci_dev *pdev,
4920  const struct pci_device_id *ent)
4921 {
4922  static int cas_version_printed = 0;
4923  unsigned long casreg_len;
4924  struct net_device *dev;
4925  struct cas *cp;
4926  int i, err, pci_using_dac;
4927  u16 pci_cmd;
4928  u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4929 
4930  if (cas_version_printed++ == 0)
4931  pr_info("%s", version);
4932 
4933  err = pci_enable_device(pdev);
4934  if (err) {
4935  dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4936  return err;
4937  }
4938 
4939  if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4940  dev_err(&pdev->dev, "Cannot find proper PCI device "
4941  "base address, aborting\n");
4942  err = -ENODEV;
4943  goto err_out_disable_pdev;
4944  }
4945 
4946  dev = alloc_etherdev(sizeof(*cp));
4947  if (!dev) {
4948  err = -ENOMEM;
4949  goto err_out_disable_pdev;
4950  }
4951  SET_NETDEV_DEV(dev, &pdev->dev);
4952 
4953  err = pci_request_regions(pdev, dev->name);
4954  if (err) {
4955  dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4956  goto err_out_free_netdev;
4957  }
4958  pci_set_master(pdev);
4959 
4960  /* we must always turn on parity response or else parity
4961  * doesn't get generated properly. disable SERR/PERR as well.
4962  * in addition, we want to turn MWI on.
4963  */
4964  pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4965  pci_cmd &= ~PCI_COMMAND_SERR;
4966  pci_cmd |= PCI_COMMAND_PARITY;
4967  pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4968  if (pci_try_set_mwi(pdev))
4969  pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4970 
4971  cas_program_bridge(pdev);
4972 
4973  /*
4974  * On some architectures, the default cache line size set
4975  * by pci_try_set_mwi reduces perforamnce. We have to increase
4976  * it for this case. To start, we'll print some configuration
4977  * data.
4978  */
4979 #if 1
4980  pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4981  &orig_cacheline_size);
4982  if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4983  cas_cacheline_size =
4986  if (pci_write_config_byte(pdev,
4988  cas_cacheline_size)) {
4989  dev_err(&pdev->dev, "Could not set PCI cache "
4990  "line size\n");
4991  goto err_write_cacheline;
4992  }
4993  }
4994 #endif
4995 
4996 
4997  /* Configure DMA attributes. */
4998  if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4999  pci_using_dac = 1;
5000  err = pci_set_consistent_dma_mask(pdev,
5001  DMA_BIT_MASK(64));
5002  if (err < 0) {
5003  dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5004  "for consistent allocations\n");
5005  goto err_out_free_res;
5006  }
5007 
5008  } else {
5009  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5010  if (err) {
5011  dev_err(&pdev->dev, "No usable DMA configuration, "
5012  "aborting\n");
5013  goto err_out_free_res;
5014  }
5015  pci_using_dac = 0;
5016  }
5017 
5018  casreg_len = pci_resource_len(pdev, 0);
5019 
5020  cp = netdev_priv(dev);
5021  cp->pdev = pdev;
5022 #if 1
5023  /* A value of 0 indicates we never explicitly set it */
5024  cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5025 #endif
5026  cp->dev = dev;
5027  cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5028  cassini_debug;
5029 
5030 #if defined(CONFIG_SPARC)
5031  cp->of_node = pci_device_to_OF_node(pdev);
5032 #endif
5033 
5036 
5037  spin_lock_init(&cp->lock);
5040  for (i = 0; i < N_TX_RINGS; i++) {
5041  spin_lock_init(&cp->stat_lock[i]);
5042  spin_lock_init(&cp->tx_lock[i]);
5043  }
5044  spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5045  mutex_init(&cp->pm_mutex);
5046 
5047  init_timer(&cp->link_timer);
5048  cp->link_timer.function = cas_link_timer;
5049  cp->link_timer.data = (unsigned long) cp;
5050 
5051 #if 1
5052  /* Just in case the implementation of atomic operations
5053  * change so that an explicit initialization is necessary.
5054  */
5055  atomic_set(&cp->reset_task_pending, 0);
5059 #endif
5060  INIT_WORK(&cp->reset_task, cas_reset_task);
5061 
5062  /* Default link parameters */
5063  if (link_mode >= 0 && link_mode < 6)
5064  cp->link_cntl = link_modes[link_mode];
5065  else
5066  cp->link_cntl = BMCR_ANENABLE;
5067  cp->lstate = link_down;
5069  netif_carrier_off(cp->dev);
5070  cp->timer_ticks = 0;
5071 
5072  /* give us access to cassini registers */
5073  cp->regs = pci_iomap(pdev, 0, casreg_len);
5074  if (!cp->regs) {
5075  dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5076  goto err_out_free_res;
5077  }
5078  cp->casreg_len = casreg_len;
5079 
5080  pci_save_state(pdev);
5081  cas_check_pci_invariants(cp);
5082  cas_hard_reset(cp);
5083  cas_reset(cp, 0);
5084  if (cas_check_invariants(cp))
5085  goto err_out_iounmap;
5086  if (cp->cas_flags & CAS_FLAG_SATURN)
5087  if (cas_saturn_firmware_init(cp))
5088  goto err_out_iounmap;
5089 
5090  cp->init_block = (struct cas_init_block *)
5091  pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5092  &cp->block_dvma);
5093  if (!cp->init_block) {
5094  dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5095  goto err_out_iounmap;
5096  }
5097 
5098  for (i = 0; i < N_TX_RINGS; i++)
5099  cp->init_txds[i] = cp->init_block->txds[i];
5100 
5101  for (i = 0; i < N_RX_DESC_RINGS; i++)
5102  cp->init_rxds[i] = cp->init_block->rxds[i];
5103 
5104  for (i = 0; i < N_RX_COMP_RINGS; i++)
5105  cp->init_rxcs[i] = cp->init_block->rxcs[i];
5106 
5107  for (i = 0; i < N_RX_FLOWS; i++)
5108  skb_queue_head_init(&cp->rx_flows[i]);
5109 
5110  dev->netdev_ops = &cas_netdev_ops;
5111  dev->ethtool_ops = &cas_ethtool_ops;
5113 
5114 #ifdef USE_NAPI
5115  netif_napi_add(dev, &cp->napi, cas_poll, 64);
5116 #endif
5117  dev->irq = pdev->irq;
5118  dev->dma = 0;
5119 
5120  /* Cassini features. */
5121  if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5123 
5124  if (pci_using_dac)
5125  dev->features |= NETIF_F_HIGHDMA;
5126 
5127  if (register_netdev(dev)) {
5128  dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5129  goto err_out_free_consistent;
5130  }
5131 
5132  i = readl(cp->regs + REG_BIM_CFG);
5133  netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5134  (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5135  (i & BIM_CFG_32BIT) ? "32" : "64",
5136  (i & BIM_CFG_66MHZ) ? "66" : "33",
5137  (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5138  dev->dev_addr);
5139 
5140  pci_set_drvdata(pdev, dev);
5141  cp->hw_running = 1;
5142  cas_entropy_reset(cp);
5143  cas_phy_init(cp);
5144  cas_begin_auto_negotiation(cp, NULL);
5145  return 0;
5146 
5147 err_out_free_consistent:
5148  pci_free_consistent(pdev, sizeof(struct cas_init_block),
5149  cp->init_block, cp->block_dvma);
5150 
5151 err_out_iounmap:
5152  mutex_lock(&cp->pm_mutex);
5153  if (cp->hw_running)
5154  cas_shutdown(cp);
5155  mutex_unlock(&cp->pm_mutex);
5156 
5157  pci_iounmap(pdev, cp->regs);
5158 
5159 
5160 err_out_free_res:
5161  pci_release_regions(pdev);
5162 
5163 err_write_cacheline:
5164  /* Try to restore it in case the error occurred after we
5165  * set it.
5166  */
5167  pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5168 
5169 err_out_free_netdev:
5170  free_netdev(dev);
5171 
5172 err_out_disable_pdev:
5173  pci_disable_device(pdev);
5174  pci_set_drvdata(pdev, NULL);
5175  return -ENODEV;
5176 }
5177 
5178 static void __devexit cas_remove_one(struct pci_dev *pdev)
5179 {
5180  struct net_device *dev = pci_get_drvdata(pdev);
5181  struct cas *cp;
5182  if (!dev)
5183  return;
5184 
5185  cp = netdev_priv(dev);
5186  unregister_netdev(dev);
5187 
5188  if (cp->fw_data)
5189  vfree(cp->fw_data);
5190 
5191  mutex_lock(&cp->pm_mutex);
5193  if (cp->hw_running)
5194  cas_shutdown(cp);
5195  mutex_unlock(&cp->pm_mutex);
5196 
5197 #if 1
5198  if (cp->orig_cacheline_size) {
5199  /* Restore the cache line size if we had modified
5200  * it.
5201  */
5202  pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5203  cp->orig_cacheline_size);
5204  }
5205 #endif
5206  pci_free_consistent(pdev, sizeof(struct cas_init_block),
5207  cp->init_block, cp->block_dvma);
5208  pci_iounmap(pdev, cp->regs);
5209  free_netdev(dev);
5210  pci_release_regions(pdev);
5211  pci_disable_device(pdev);
5212  pci_set_drvdata(pdev, NULL);
5213 }
5214 
5215 #ifdef CONFIG_PM
5216 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5217 {
5218  struct net_device *dev = pci_get_drvdata(pdev);
5219  struct cas *cp = netdev_priv(dev);
5220  unsigned long flags;
5221 
5222  mutex_lock(&cp->pm_mutex);
5223 
5224  /* If the driver is opened, we stop the DMA */
5225  if (cp->opened) {
5226  netif_device_detach(dev);
5227 
5228  cas_lock_all_save(cp, flags);
5229 
5230  /* We can set the second arg of cas_reset to 0
5231  * because on resume, we'll call cas_init_hw with
5232  * its second arg set so that autonegotiation is
5233  * restarted.
5234  */
5235  cas_reset(cp, 0);
5236  cas_clean_rings(cp);
5237  cas_unlock_all_restore(cp, flags);
5238  }
5239 
5240  if (cp->hw_running)
5241  cas_shutdown(cp);
5242  mutex_unlock(&cp->pm_mutex);
5243 
5244  return 0;
5245 }
5246 
5247 static int cas_resume(struct pci_dev *pdev)
5248 {
5249  struct net_device *dev = pci_get_drvdata(pdev);
5250  struct cas *cp = netdev_priv(dev);
5251 
5252  netdev_info(dev, "resuming\n");
5253 
5254  mutex_lock(&cp->pm_mutex);
5255  cas_hard_reset(cp);
5256  if (cp->opened) {
5257  unsigned long flags;
5258  cas_lock_all_save(cp, flags);
5259  cas_reset(cp, 0);
5260  cp->hw_running = 1;
5261  cas_clean_rings(cp);
5262  cas_init_hw(cp, 1);
5263  cas_unlock_all_restore(cp, flags);
5264 
5265  netif_device_attach(dev);
5266  }
5267  mutex_unlock(&cp->pm_mutex);
5268  return 0;
5269 }
5270 #endif /* CONFIG_PM */
5271 
5272 static struct pci_driver cas_driver = {
5273  .name = DRV_MODULE_NAME,
5274  .id_table = cas_pci_tbl,
5275  .probe = cas_init_one,
5276  .remove = __devexit_p(cas_remove_one),
5277 #ifdef CONFIG_PM
5278  .suspend = cas_suspend,
5279  .resume = cas_resume
5280 #endif
5281 };
5282 
5283 static int __init cas_init(void)
5284 {
5285  if (linkdown_timeout > 0)
5286  link_transition_timeout = linkdown_timeout * HZ;
5287  else
5288  link_transition_timeout = 0;
5289 
5290  return pci_register_driver(&cas_driver);
5291 }
5292 
5293 static void __exit cas_cleanup(void)
5294 {
5295  pci_unregister_driver(&cas_driver);
5296 }
5297 
5298 module_init(cas_init);
5299 module_exit(cas_cleanup);