| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wilthlem1 | Structured version Visualization version Unicode version | ||
| Description: The only elements that
are equal to their own inverses in the
multiplicative group of nonzero elements in |
| Ref | Expression |
|---|---|
| wilthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 12342 |
. . . . . . . . . 10
| |
| 2 | 1 | adantl 482 |
. . . . . . . . 9
|
| 3 | peano2zm 11420 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 5 | 4 | zcnd 11483 |
. . . . . . 7
|
| 6 | 2 | peano2zd 11485 |
. . . . . . . 8
|
| 7 | 6 | zcnd 11483 |
. . . . . . 7
|
| 8 | 5, 7 | mulcomd 10061 |
. . . . . 6
|
| 9 | 2 | zcnd 11483 |
. . . . . . 7
|
| 10 | ax-1cn 9994 |
. . . . . . 7
| |
| 11 | subsq 12972 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | sylancl 694 |
. . . . . 6
|
| 13 | 9 | sqvald 13005 |
. . . . . . 7
|
| 14 | sq1 12958 |
. . . . . . . 8
| |
| 15 | 14 | a1i 11 |
. . . . . . 7
|
| 16 | 13, 15 | oveq12d 6668 |
. . . . . 6
|
| 17 | 8, 12, 16 | 3eqtr2d 2662 |
. . . . 5
|
| 18 | 17 | breq2d 4665 |
. . . 4
|
| 19 | 1e0p1 11552 |
. . . . . . . 8
| |
| 20 | 19 | oveq1i 6660 |
. . . . . . 7
|
| 21 | 0z 11388 |
. . . . . . . 8
| |
| 22 | fzp1ss 12392 |
. . . . . . . 8
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . 7
|
| 24 | 20, 23 | eqsstri 3635 |
. . . . . 6
|
| 25 | simpr 477 |
. . . . . 6
| |
| 26 | 24, 25 | sseldi 3601 |
. . . . 5
|
| 27 | 26 | biantrurd 529 |
. . . 4
|
| 28 | 18, 27 | bitrd 268 |
. . 3
|
| 29 | simpl 473 |
. . . 4
| |
| 30 | euclemma 15425 |
. . . 4
| |
| 31 | 29, 4, 6, 30 | syl3anc 1326 |
. . 3
|
| 32 | prmnn 15388 |
. . . . 5
| |
| 33 | fzm1ndvds 15044 |
. . . . 5
| |
| 34 | 32, 33 | sylan 488 |
. . . 4
|
| 35 | eqid 2622 |
. . . . 5
| |
| 36 | 35 | prmdiveq 15491 |
. . . 4
|
| 37 | 29, 2, 34, 36 | syl3anc 1326 |
. . 3
|
| 38 | 28, 31, 37 | 3bitr3rd 299 |
. 2
|
| 39 | 29, 32 | syl 17 |
. . . . 5
|
| 40 | 1zzd 11408 |
. . . . 5
| |
| 41 | moddvds 14991 |
. . . . 5
| |
| 42 | 39, 2, 40, 41 | syl3anc 1326 |
. . . 4
|
| 43 | elfznn 12370 |
. . . . . . . 8
| |
| 44 | 43 | adantl 482 |
. . . . . . 7
|
| 45 | 44 | nnred 11035 |
. . . . . 6
|
| 46 | 39 | nnrpd 11870 |
. . . . . 6
|
| 47 | 44 | nnnn0d 11351 |
. . . . . . 7
|
| 48 | 47 | nn0ge0d 11354 |
. . . . . 6
|
| 49 | elfzle2 12345 |
. . . . . . . 8
| |
| 50 | 49 | adantl 482 |
. . . . . . 7
|
| 51 | prmz 15389 |
. . . . . . . 8
| |
| 52 | zltlem1 11430 |
. . . . . . . 8
| |
| 53 | 1, 51, 52 | syl2anr 495 |
. . . . . . 7
|
| 54 | 50, 53 | mpbird 247 |
. . . . . 6
|
| 55 | modid 12695 |
. . . . . 6
| |
| 56 | 45, 46, 48, 54, 55 | syl22anc 1327 |
. . . . 5
|
| 57 | 39 | nnred 11035 |
. . . . . 6
|
| 58 | prmuz2 15408 |
. . . . . . . 8
| |
| 59 | 29, 58 | syl 17 |
. . . . . . 7
|
| 60 | eluz2b2 11761 |
. . . . . . . 8
| |
| 61 | 60 | simprbi 480 |
. . . . . . 7
|
| 62 | 59, 61 | syl 17 |
. . . . . 6
|
| 63 | 1mod 12702 |
. . . . . 6
| |
| 64 | 57, 62, 63 | syl2anc 693 |
. . . . 5
|
| 65 | 56, 64 | eqeq12d 2637 |
. . . 4
|
| 66 | 42, 65 | bitr3d 270 |
. . 3
|
| 67 | 40 | znegcld 11484 |
. . . . 5
|
| 68 | moddvds 14991 |
. . . . 5
| |
| 69 | 39, 2, 67, 68 | syl3anc 1326 |
. . . 4
|
| 70 | 39 | nncnd 11036 |
. . . . . . . . . 10
|
| 71 | 70 | mulid2d 10058 |
. . . . . . . . 9
|
| 72 | 71 | oveq2d 6666 |
. . . . . . . 8
|
| 73 | neg1cn 11124 |
. . . . . . . . 9
| |
| 74 | addcom 10222 |
. . . . . . . . 9
| |
| 75 | 73, 70, 74 | sylancr 695 |
. . . . . . . 8
|
| 76 | negsub 10329 |
. . . . . . . . 9
| |
| 77 | 70, 10, 76 | sylancl 694 |
. . . . . . . 8
|
| 78 | 72, 75, 77 | 3eqtrd 2660 |
. . . . . . 7
|
| 79 | 78 | oveq1d 6665 |
. . . . . 6
|
| 80 | neg1rr 11125 |
. . . . . . . 8
| |
| 81 | 80 | a1i 11 |
. . . . . . 7
|
| 82 | modcyc 12705 |
. . . . . . 7
| |
| 83 | 81, 46, 40, 82 | syl3anc 1326 |
. . . . . 6
|
| 84 | peano2rem 10348 |
. . . . . . . 8
| |
| 85 | 57, 84 | syl 17 |
. . . . . . 7
|
| 86 | nnm1nn0 11334 |
. . . . . . . . 9
| |
| 87 | 39, 86 | syl 17 |
. . . . . . . 8
|
| 88 | 87 | nn0ge0d 11354 |
. . . . . . 7
|
| 89 | 57 | ltm1d 10956 |
. . . . . . 7
|
| 90 | modid 12695 |
. . . . . . 7
| |
| 91 | 85, 46, 88, 89, 90 | syl22anc 1327 |
. . . . . 6
|
| 92 | 79, 83, 91 | 3eqtr3d 2664 |
. . . . 5
|
| 93 | 56, 92 | eqeq12d 2637 |
. . . 4
|
| 94 | subneg 10330 |
. . . . . 6
| |
| 95 | 9, 10, 94 | sylancl 694 |
. . . . 5
|
| 96 | 95 | breq2d 4665 |
. . . 4
|
| 97 | 69, 93, 96 | 3bitr3rd 299 |
. . 3
|
| 98 | 66, 97 | orbi12d 746 |
. 2
|
| 99 | 38, 98 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-phi 15471 |
| This theorem is referenced by: wilthlem2 24795 |
| Copyright terms: Public domain | W3C validator |