MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggenod Structured version   Visualization version   Unicode version

Theorem cyggenod 18286
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
iscyg3.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cyggenod.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
cyggenod  |-  ( ( G  e.  Grp  /\  B  e.  Fin )  ->  ( X  e.  E  <->  ( X  e.  B  /\  ( O `  X )  =  ( # `  B
) ) ) )
Distinct variable groups:    x, n, B    n, O    n, X, x    n, G, x    .x. , n, x
Allowed substitution hints:    E( x, n)    O( x)

Proof of Theorem cyggenod
StepHypRef Expression
1 iscyg.1 . . 3  |-  B  =  ( Base `  G
)
2 iscyg.2 . . 3  |-  .x.  =  (.g
`  G )
3 iscyg3.e . . 3  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
41, 2, 3iscyggen 18282 . 2  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
5 simplr 792 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  B  e.  Fin )
6 simplll 798 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  B  e.  Fin )  /\  X  e.  B )  /\  n  e.  ZZ )  ->  G  e.  Grp )
7 simpr 477 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  B  e.  Fin )  /\  X  e.  B )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
8 simplr 792 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  B  e.  Fin )  /\  X  e.  B )  /\  n  e.  ZZ )  ->  X  e.  B )
91, 2mulgcl 17559 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  n  e.  ZZ  /\  X  e.  B )  ->  (
n  .x.  X )  e.  B )
106, 7, 8, 9syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  B  e.  Fin )  /\  X  e.  B )  /\  n  e.  ZZ )  ->  (
n  .x.  X )  e.  B )
11 eqid 2622 . . . . . . . 8  |-  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  ( n  e.  ZZ  |->  ( n  .x.  X ) )
1210, 11fmptd 6385 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( n  e.  ZZ  |->  ( n  .x.  X ) ) : ZZ --> B )
13 frn 6053 . . . . . . 7  |-  ( ( n  e.  ZZ  |->  ( n  .x.  X ) ) : ZZ --> B  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )
1412, 13syl 17 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) 
C_  B )
15 ssfi 8180 . . . . . 6  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  e. 
Fin )
165, 14, 15syl2anc 693 . . . . 5  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  e.  Fin )
17 hashen 13135 . . . . 5  |-  ( ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  e. 
Fin  /\  B  e.  Fin )  ->  ( (
# `  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) )  =  ( # `  B )  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) 
~~  B ) )
1816, 5, 17syl2anc 693 . . . 4  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( ( # `
 ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) )  =  ( # `  B
)  <->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  ~~  B ) )
19 cyggenod.o . . . . . . . 8  |-  O  =  ( od `  G
)
201, 19, 2, 11dfod2 17981 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( O `  X
)  =  if ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  e. 
Fin ,  ( # `  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) ) ,  0 ) )
2120adantlr 751 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( O `  X )  =  if ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  e.  Fin ,  (
# `  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) ) ,  0 ) )
2216iftrued 4094 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  if ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  e.  Fin , 
( # `  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) ) ) ,  0 )  =  ( # `  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) ) )
2321, 22eqtr2d 2657 . . . . 5  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( # `  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) )  =  ( O `  X ) )
2423eqeq1d 2624 . . . 4  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( ( # `
 ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) )  =  ( # `  B
)  <->  ( O `  X )  =  (
# `  B )
) )
25 fisseneq 8171 . . . . . . 7  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  ~~  B )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B )
26253expia 1267 . . . . . 6  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )  ->  ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) 
~~  B  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
27 enrefg 7987 . . . . . . . 8  |-  ( B  e.  Fin  ->  B  ~~  B )
2827adantr 481 . . . . . . 7  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )  ->  B  ~~  B )
29 breq1 4656 . . . . . . 7  |-  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B  -> 
( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  ~~  B 
<->  B  ~~  B ) )
3028, 29syl5ibrcom 237 . . . . . 6  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )  ->  ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  B  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  ~~  B ) )
3126, 30impbid 202 . . . . 5  |-  ( ( B  e.  Fin  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )  ->  ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) 
~~  B  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  B ) )
325, 14, 31syl2anc 693 . . . 4  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  ~~  B  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  B ) )
3318, 24, 323bitr3rd 299 . . 3  |-  ( ( ( G  e.  Grp  /\  B  e.  Fin )  /\  X  e.  B
)  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B  <->  ( O `  X )  =  (
# `  B )
) )
3433pm5.32da 673 . 2  |-  ( ( G  e.  Grp  /\  B  e.  Fin )  ->  ( ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B )  <-> 
( X  e.  B  /\  ( O `  X
)  =  ( # `  B ) ) ) )
354, 34syl5bb 272 1  |-  ( ( G  e.  Grp  /\  B  e.  Fin )  ->  ( X  e.  E  <->  ( X  e.  B  /\  ( O `  X )  =  ( # `  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   0cc0 9936   ZZcz 11377   #chash 13117   Basecbs 15857   Grpcgrp 17422  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948
This theorem is referenced by:  iscygodd  18290  cyggexb  18300
  Copyright terms: Public domain W3C validator