MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   Unicode version

Theorem 3dec 13050
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a  |-  A  e. 
NN0
3dec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dec  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 11497 . 2  |- ;; A B C  =  (
(; 1 0  x. ; A B )  +  C )
2 dfdec10 11497 . . . . . 6  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
32oveq2i 6661 . . . . 5  |-  (; 1 0  x. ; A B )  =  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )
4 1nn 11031 . . . . . . . 8  |-  1  e.  NN
54decnncl2 11525 . . . . . . 7  |- ; 1 0  e.  NN
65nncni 11030 . . . . . 6  |- ; 1 0  e.  CC
7 3dec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 11304 . . . . . . 7  |-  A  e.  CC
96, 8mulcli 10045 . . . . . 6  |-  (; 1 0  x.  A
)  e.  CC
10 3dec.b . . . . . . 7  |-  B  e. 
NN0
1110nn0cni 11304 . . . . . 6  |-  B  e.  CC
126, 9, 11adddii 10050 . . . . 5  |-  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )  =  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )
133, 12eqtri 2644 . . . 4  |-  (; 1 0  x. ; A B )  =  ( (; 1 0  x.  (; 1 0  x.  A ) )  +  (; 1 0  x.  B
) )
146, 6, 8mulassi 10049 . . . . . . 7  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  (; 1
0  x.  (; 1 0  x.  A
) )
1514eqcomi 2631 . . . . . 6  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0  x. ; 1 0 )  x.  A )
166sqvali 12943 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 1 0  x. ; 1 0 )
1716eqcomi 2631 . . . . . . 7  |-  (; 1 0  x. ; 1 0 )  =  (; 1 0 ^ 2 )
1817oveq1i 6660 . . . . . 6  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  ( (; 1 0 ^ 2 )  x.  A )
1915, 18eqtri 2644 . . . . 5  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0 ^ 2 )  x.  A )
2019oveq1i 6660 . . . 4  |-  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2113, 20eqtri 2644 . . 3  |-  (; 1 0  x. ; A B )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2221oveq1i 6660 . 2  |-  ( (; 1
0  x. ; A B )  +  C )  =  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
231, 22eqtri 2644 1  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   2c2 11070   NN0cn0 11292  ;cdc 11493   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  3dvds2dec  15056
  Copyright terms: Public domain W3C validator