MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds2dec Structured version   Visualization version   Unicode version

Theorem 3dvds2dec 15056
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
3dvds2dec.c  |-  C  e. 
NN0
Assertion
Ref Expression
3dvds2dec  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5  |-  A  e. 
NN0
2 3dvdsdec.b . . . . 5  |-  B  e. 
NN0
31, 23dec 13050 . . . 4  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
4 sq10e99m1 13049 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 9 9  +  1 )
54oveq1i 6660 . . . . . . 7  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  +  1 )  x.  A )
6 9nn0 11316 . . . . . . . . . 10  |-  9  e.  NN0
76, 6deccl 11512 . . . . . . . . 9  |- ; 9 9  e.  NN0
87nn0cni 11304 . . . . . . . 8  |- ; 9 9  e.  CC
9 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
101nn0cni 11304 . . . . . . . 8  |-  A  e.  CC
118, 9, 10adddiri 10051 . . . . . . 7  |-  ( (; 9
9  +  1 )  x.  A )  =  ( (; 9 9  x.  A
)  +  ( 1  x.  A ) )
1210mulid2i 10043 . . . . . . . 8  |-  ( 1  x.  A )  =  A
1312oveq2i 6661 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 1  x.  A ) )  =  ( (; 9 9  x.  A
)  +  A )
145, 11, 133eqtri 2648 . . . . . 6  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  x.  A
)  +  A )
15 9p1e10 11496 . . . . . . . . 9  |-  ( 9  +  1 )  = ; 1
0
1615eqcomi 2631 . . . . . . . 8  |- ; 1 0  =  ( 9  +  1 )
1716oveq1i 6660 . . . . . . 7  |-  (; 1 0  x.  B
)  =  ( ( 9  +  1 )  x.  B )
18 9cn 11108 . . . . . . . 8  |-  9  e.  CC
192nn0cni 11304 . . . . . . . 8  |-  B  e.  CC
2018, 9, 19adddiri 10051 . . . . . . 7  |-  ( ( 9  +  1 )  x.  B )  =  ( ( 9  x.  B )  +  ( 1  x.  B ) )
2119mulid2i 10043 . . . . . . . 8  |-  ( 1  x.  B )  =  B
2221oveq2i 6661 . . . . . . 7  |-  ( ( 9  x.  B )  +  ( 1  x.  B ) )  =  ( ( 9  x.  B )  +  B
)
2317, 20, 223eqtri 2648 . . . . . 6  |-  (; 1 0  x.  B
)  =  ( ( 9  x.  B )  +  B )
2414, 23oveq12i 6662 . . . . 5  |-  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  =  ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )
2524oveq1i 6660 . . . 4  |-  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)  =  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )
268, 10mulcli 10045 . . . . . 6  |-  (; 9 9  x.  A
)  e.  CC
2718, 19mulcli 10045 . . . . . 6  |-  ( 9  x.  B )  e.  CC
28 add4 10256 . . . . . . 7  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
(; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) ) )
2928oveq1d 6665 . . . . . 6  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C ) )
3026, 10, 27, 19, 29mp4an 709 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )
3126, 27addcli 10044 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  e.  CC
3210, 19addcli 10044 . . . . . 6  |-  ( A  +  B )  e.  CC
33 3dvds2dec.c . . . . . . 7  |-  C  e. 
NN0
3433nn0cni 11304 . . . . . 6  |-  C  e.  CC
3531, 32, 34addassi 10048 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )
36 9t11e99 11671 . . . . . . . . . . 11  |-  ( 9  x. ; 1 1 )  = ; 9
9
3736eqcomi 2631 . . . . . . . . . 10  |- ; 9 9  =  ( 9  x. ; 1 1 )
3837oveq1i 6660 . . . . . . . . 9  |-  (; 9 9  x.  A
)  =  ( ( 9  x. ; 1 1 )  x.  A )
39 1nn0 11308 . . . . . . . . . . . 12  |-  1  e.  NN0
4039, 39deccl 11512 . . . . . . . . . . 11  |- ; 1 1  e.  NN0
4140nn0cni 11304 . . . . . . . . . 10  |- ; 1 1  e.  CC
4218, 41, 10mulassi 10049 . . . . . . . . 9  |-  ( ( 9  x. ; 1 1 )  x.  A )  =  ( 9  x.  (; 1 1  x.  A
) )
4338, 42eqtri 2644 . . . . . . . 8  |-  (; 9 9  x.  A
)  =  ( 9  x.  (; 1 1  x.  A
) )
4443oveq1i 6660 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4541, 10mulcli 10045 . . . . . . . . 9  |-  (; 1 1  x.  A
)  e.  CC
4618, 45, 19adddii 10050 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4746eqcomi 2631 . . . . . . 7  |-  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )  =  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )
48 3t3e9 11180 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
4948eqcomi 2631 . . . . . . . . 9  |-  9  =  ( 3  x.  3 )
5049oveq1i 6660 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )
51 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
5245, 19addcli 10044 . . . . . . . . 9  |-  ( (; 1
1  x.  A )  +  B )  e.  CC
5351, 51, 52mulassi 10049 . . . . . . . 8  |-  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5450, 53eqtri 2644 . . . . . . 7  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5544, 47, 543eqtri 2648 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
5655oveq1i 6660 . . . . 5  |-  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )  =  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) )
5730, 35, 563eqtri 2648 . . . 4  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
583, 25, 573eqtri 2648 . . 3  |- ;; A B C  =  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
5958breq2i 4661 . 2  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
60 3z 11410 . . 3  |-  3  e.  ZZ
611nn0zi 11402 . . . . 5  |-  A  e.  ZZ
622nn0zi 11402 . . . . 5  |-  B  e.  ZZ
63 zaddcl 11417 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
6461, 62, 63mp2an 708 . . . 4  |-  ( A  +  B )  e.  ZZ
6533nn0zi 11402 . . . 4  |-  C  e.  ZZ
66 zaddcl 11417 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  +  B )  +  C
)  e.  ZZ )
6764, 65, 66mp2an 708 . . 3  |-  ( ( A  +  B )  +  C )  e.  ZZ
6840nn0zi 11402 . . . . . . . 8  |- ; 1 1  e.  ZZ
69 zmulcl 11426 . . . . . . . 8  |-  ( (; 1
1  e.  ZZ  /\  A  e.  ZZ )  ->  (; 1 1  x.  A
)  e.  ZZ )
7068, 61, 69mp2an 708 . . . . . . 7  |-  (; 1 1  x.  A
)  e.  ZZ
71 zaddcl 11417 . . . . . . 7  |-  ( ( (; 1 1  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )
7270, 62, 71mp2an 708 . . . . . 6  |-  ( (; 1
1  x.  A )  +  B )  e.  ZZ
73 zmulcl 11426 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )  -> 
( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )
7460, 72, 73mp2an 708 . . . . 5  |-  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) )  e.  ZZ
75 zmulcl 11426 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ )
7660, 74, 75mp2an 708 . . . 4  |-  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ
77 dvdsmul1 15003 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
7860, 74, 77mp2an 708 . . . 4  |-  3  ||  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
7976, 78pm3.2i 471 . . 3  |-  ( ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
80 dvdsadd2b 15028 . . 3  |-  ( ( 3  e.  ZZ  /\  ( ( A  +  B )  +  C
)  e.  ZZ  /\  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) ) )  ->  ( 3  ||  ( ( A  +  B )  +  C
)  <->  3  ||  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) ) ) )
8160, 67, 79, 80mp3an 1424 . 2  |-  ( 3 
||  ( ( A  +  B )  +  C )  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
8259, 81bitr4i 267 1  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   2c2 11070   3c3 11071   9c9 11077   NN0cn0 11292   ZZcz 11377  ;cdc 11493   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-seq 12802  df-exp 12861  df-dvds 14984
This theorem is referenced by:  257prm  41473  139prmALT  41511  127prm  41515
  Copyright terms: Public domain W3C validator