MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Visualization version   Unicode version

Theorem mbfi1flimlem 23489
Description: Lemma for mbfi1flim 23490. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1  |-  ( ph  ->  F  e. MblFn )
mbfi1flimlem.2  |-  ( ph  ->  F : RR --> RR )
Assertion
Ref Expression
mbfi1flimlem  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, n, x, F    ph, g, n, x

Proof of Theorem mbfi1flimlem
Dummy variables  y 
f  h  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5  |-  ( ph  ->  F : RR --> RR )
21ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
31feqmptd 6249 . . . . 5  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
4 mbfi1flim.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
53, 4eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  ( F `  y ) )  e. MblFn )
62, 5mbfpos 23418 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )  e. MblFn )
7 0re 10040 . . . . . 6  |-  0  e.  RR
8 ifcl 4130 . . . . . 6  |-  ( ( ( F `  y
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  y
) ,  ( F `
 y ) ,  0 )  e.  RR )
92, 7, 8sylancl 694 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  RR )
10 max1 12016 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( F `  y )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
117, 2, 10sylancr 695 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
12 elrege0 12278 . . . . 5  |-  ( if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) )
139, 11, 12sylanbrc 698 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  ( 0 [,) +oo ) )
14 eqid 2622 . . . 4  |-  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )  =  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
1513, 14fmptd 6385 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
166, 15mbfi1fseq 23488 . 2  |-  ( ph  ->  E. f ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) ) )
172renegcld 10457 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  -u ( F `  y )  e.  RR )
182, 5mbfneg 23417 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  -u ( F `  y
) )  e. MblFn )
1917, 18mbfpos 23418 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )  e. MblFn )
20 ifcl 4130 . . . . . 6  |-  ( (
-u ( F `  y )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  RR )
2117, 7, 20sylancl 694 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 )  e.  RR )
22 max1 12016 . . . . . 6  |-  ( ( 0  e.  RR  /\  -u ( F `  y
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
237, 17, 22sylancr 695 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
24 elrege0 12278 . . . . 5  |-  ( if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) )
2521, 23, 24sylanbrc 698 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 )  e.  ( 0 [,) +oo ) )
26 eqid 2622 . . . 4  |-  ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) )  =  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
2725, 26fmptd 6385 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
2819, 27mbfi1fseq 23488 . 2  |-  ( ph  ->  E. h ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )
29 eeanv 2182 . . 3  |-  ( E. f E. h ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  <->  ( E. f ( f : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  E. h ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
30 3simpb 1059 . . . . . . 7  |-  ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  ->  (
f : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) ) )
31 3simpb 1059 . . . . . . 7  |-  ( ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  (
h : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )
3230, 31anim12i 590 . . . . . 6  |-  ( ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  -> 
( ( f : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) ) ) )
33 an4 865 . . . . . 6  |-  ( ( ( f : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  <->  ( (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
3432, 33sylib 208 . . . . 5  |-  ( ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  -> 
( ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
35 r19.26 3064 . . . . . . 7  |-  ( A. x  e.  RR  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) ) )
36 i1fsub 23475 . . . . . . . . . 10  |-  ( ( x  e.  dom  S.1  /\  y  e.  dom  S.1 )  ->  ( x  oF  -  y )  e.  dom  S.1 )
3736adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  (
x  e.  dom  S.1  /\  y  e.  dom  S.1 ) )  ->  (
x  oF  -  y )  e.  dom  S.1 )
38 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  f : NN --> dom  S.1 )
39 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  h : NN --> dom  S.1 )
40 nnex 11026 . . . . . . . . . 10  |-  NN  e.  _V
4140a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  NN  e.  _V )
42 inidm 3822 . . . . . . . . 9  |-  ( NN 
i^i  NN )  =  NN
4337, 38, 39, 41, 41, 42off 6912 . . . . . . . 8  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( f  oF  oF  -  h ) : NN --> dom  S.1 )
44 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4544breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
0  <_  ( F `  y )  <->  0  <_  ( F `  x ) ) )
4645, 44ifbieq1d 4109 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  =  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
47 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( F `
 x )  e. 
_V
48 c0ex 10034 . . . . . . . . . . . . . . 15  |-  0  e.  _V
4947, 48ifex 4156 . . . . . . . . . . . . . 14  |-  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  e. 
_V
5046, 14, 49fvmpt 6282 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
5150breq2d 4665 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
5244negeqd 10275 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  -u ( F `  y )  =  -u ( F `  x ) )
5352breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
0  <_  -u ( F `
 y )  <->  0  <_  -u ( F `  x ) ) )
5453, 52ifbieq1d 4109 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  =  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
55 negex 10279 . . . . . . . . . . . . . . 15  |-  -u ( F `  x )  e.  _V
5655, 48ifex 4156 . . . . . . . . . . . . . 14  |-  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 )  e.  _V
5754, 26, 56fvmpt 6282 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
)  =  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
5857breq2d 4665 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )
5951, 58anbi12d 747 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) )
6059adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) )
61 nnuz 11723 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
62 1zzd 11408 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  1  e.  ZZ )
63 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
6440mptex 6486 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) )  e. 
_V
6564a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  e. 
_V )
66 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
6738ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
f `  n )  e.  dom  S.1 )
68 i1ff 23443 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  n )  e.  dom  S.1  ->  ( f `  n ) : RR --> RR )
6967, 68syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
f `  n ) : RR --> RR )
7069ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  /\  x  e.  RR )  ->  ( ( f `
 n ) `  x )  e.  RR )
7170an32s 846 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( f `
 n ) `  x )  e.  RR )
7271recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( f `
 n ) `  x )  e.  CC )
73 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )
7472, 73fmptd 6385 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( f `  n
) `  x )
) : NN --> CC )
7574adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) : NN --> CC )
7675ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  e.  CC )
7739ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
h `  n )  e.  dom  S.1 )
78 i1ff 23443 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( h `  n )  e.  dom  S.1  ->  ( h `  n ) : RR --> RR )
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
h `  n ) : RR --> RR )
8079ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  /\  x  e.  RR )  ->  ( ( h `
 n ) `  x )  e.  RR )
8180an32s 846 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( h `
 n ) `  x )  e.  RR )
8281recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( h `
 n ) `  x )  e.  CC )
83 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  ( ( h `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )
8482, 83fmptd 6385 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( h `  n
) `  x )
) : NN --> CC )
8584adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) ) : NN --> CC )
8685ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
)  e.  CC )
87 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : NN --> dom  S.1  ->  f  Fn  NN )
8838, 87syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  f  Fn  NN )
89 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( h : NN --> dom  S.1  ->  h  Fn  NN )
9039, 89syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  h  Fn  NN )
91 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  =  ( f `  k ) )
92 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  =  ( h `  k ) )
9388, 90, 41, 41, 42, 91, 92ofval 6906 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
( f  oF  oF  -  h
) `  k )  =  ( ( f `
 k )  oF  -  ( h `
 k ) ) )
9493fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
( ( f  oF  oF  -  h ) `  k
) `  x )  =  ( ( ( f `  k )  oF  -  (
h `  k )
) `  x )
)
9594adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k )  oF  -  ( h `  k ) ) `  x ) )
9638ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  dom  S.1 )
97 i1ff 23443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  k )  e.  dom  S.1  ->  ( f `  k ) : RR --> RR )
98 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  k ) : RR --> RR  ->  ( f `  k )  Fn  RR )
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  Fn  RR )
10039ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  e.  dom  S.1 )
101 i1ff 23443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h `  k )  e.  dom  S.1  ->  ( h `  k ) : RR --> RR )
102 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h `  k ) : RR --> RR  ->  ( h `  k )  Fn  RR )
103100, 101, 1023syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  Fn  RR )
104 reex 10027 . . . . . . . . . . . . . . . . . . 19  |-  RR  e.  _V
105104a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  RR  e.  _V )
106 inidm 3822 . . . . . . . . . . . . . . . . . 18  |-  ( RR 
i^i  RR )  =  RR
107 eqidd 2623 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( f `
 k ) `  x )  =  ( ( f `  k
) `  x )
)
108 eqidd 2623 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( h `
 k ) `  x )  =  ( ( h `  k
) `  x )
)
10999, 103, 105, 105, 106, 107, 108ofval 6906 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f `  k )  oF  -  (
h `  k )
) `  x )  =  ( ( ( f `  k ) `
 x )  -  ( ( h `  k ) `  x
) ) )
11095, 109eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
111110an32s 846 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
112 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( f  oF  oF  -  h
) `  n )  =  ( ( f  oF  oF  -  h ) `  k ) )
113112fveq1d 6193 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
( ( f  oF  oF  -  h ) `  n
) `  x )  =  ( ( ( f  oF  oF  -  h ) `
 k ) `  x ) )
114 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) )  =  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) )
115 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  oF  oF  -  h
) `  k ) `  x )  e.  _V
116113, 114, 115fvmpt 6282 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) ) `  k
)  =  ( ( ( f  oF  oF  -  h
) `  k ) `  x ) )
117116adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) `  k )  =  ( ( ( f  oF  oF  -  h ) `  k
) `  x )
)
118 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
119118fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( f `  n
) `  x )  =  ( ( f `
 k ) `  x ) )
120 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  k ) `
 x )  e. 
_V
121119, 73, 120fvmpt 6282 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  =  ( ( f `  k ) `
 x ) )
122 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
h `  n )  =  ( h `  k ) )
123122fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( h `  n
) `  x )  =  ( ( h `
 k ) `  x ) )
124 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( ( h `  k ) `
 x )  e. 
_V
125123, 83, 124fvmpt 6282 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
)  =  ( ( h `  k ) `
 x ) )
126121, 125oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) `  k )  -  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
) )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
127126adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( ( f `  n
) `  x )
) `  k )  -  ( ( n  e.  NN  |->  ( ( h `  n ) `
 x ) ) `
 k ) )  =  ( ( ( f `  k ) `
 x )  -  ( ( h `  k ) `  x
) ) )
128111, 117, 1273eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) `  k )  =  ( ( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) `  k )  -  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
) ) )
129128adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) ) `  k
)  =  ( ( ( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  -  ( ( n  e.  NN  |->  ( ( h `  n
) `  x )
) `  k )
) )
13061, 62, 63, 65, 66, 76, 86, 129climsub 14364 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )
1311adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  F : RR --> RR )
132131ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
133 max0sub 12027 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  RR  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
134132, 133syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
135134adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
136130, 135breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) )
137136ex 450 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  ->  (
n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n
) `  x )
)  ~~>  ( F `  x ) ) )
13860, 137sylbid 230 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  (
n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n
) `  x )
)  ~~>  ( F `  x ) ) )
139138ralimdva 2962 . . . . . . . 8  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( A. x  e.  RR  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
140 ovex 6678 . . . . . . . . 9  |-  ( f  oF  oF  -  h )  e. 
_V
141 feq1 6026 . . . . . . . . . 10  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
g : NN --> dom  S.1  <->  (
f  oF  oF  -  h ) : NN --> dom  S.1 ) )
142 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
g `  n )  =  ( ( f  oF  oF  -  h ) `  n ) )
143142fveq1d 6193 . . . . . . . . . . . . 13  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( g `  n
) `  x )  =  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )
144143mpteq2dv 4745 . . . . . . . . . . . 12  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) )
145144breq1d 4663 . . . . . . . . . . 11  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
146145ralbidv 2986 . . . . . . . . . 10  |-  ( g  =  ( f  oF  oF  -  h )  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
147141, 146anbi12d 747 . . . . . . . . 9  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) )  <-> 
( ( f  oF  oF  -  h ) : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
148140, 147spcev 3300 . . . . . . . 8  |-  ( ( ( f  oF  oF  -  h
) : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
14943, 139, 148syl6an 568 . . . . . . 7  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( A. x  e.  RR  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
15035, 149syl5bir 233 . . . . . 6  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( ( A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
151150expimpd 629 . . . . 5  |-  ( ph  ->  ( ( ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15234, 151syl5 34 . . . 4  |-  ( ph  ->  ( ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
153152exlimdvv 1862 . . 3  |-  ( ph  ->  ( E. f E. h ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15429, 153syl5bir 233 . 2  |-  ( ph  ->  ( ( E. f
( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  E. h ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15516, 28, 154mp2and 715 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   [,)cico 12177    ~~> cli 14215  MblFncmbf 23383   S.1citg1 23384   0pc0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-0p 23437
This theorem is referenced by:  mbfi1flim  23490
  Copyright terms: Public domain W3C validator