MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdgn1frgrv2 Structured version   Visualization version   Unicode version

Theorem vdgn1frgrv2 27160
Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn1frgrv2.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
vdgn1frgrv2  |-  ( ( G  e. FriendGraph  /\  N  e.  V )  ->  (
1  <  ( # `  V
)  ->  ( (VtxDeg `  G ) `  N
)  =/=  1 ) )

Proof of Theorem vdgn1frgrv2
Dummy variables  a 
b  c  x  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 27124 . . . . . 6  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
21anim1i 592 . . . . 5  |-  ( ( G  e. FriendGraph  /\  N  e.  V )  ->  ( G  e. USGraph  /\  N  e.  V ) )
32adantr 481 . . . 4  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  ( G  e. USGraph  /\  N  e.  V ) )
4 vdn1frgrv2.v . . . . 5  |-  V  =  (Vtx `  G )
5 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
6 eqid 2622 . . . . 5  |-  dom  (iEdg `  G )  =  dom  (iEdg `  G )
7 eqid 2622 . . . . 5  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
84, 5, 6, 7vtxdusgrval 26383 . . . 4  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  (
(VtxDeg `  G ) `  N )  =  (
# `  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) } ) )
93, 8syl 17 . . 3  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  (
(VtxDeg `  G ) `  N )  =  (
# `  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) } ) )
10 eqid 2622 . . . . . . 7  |-  (Edg `  G )  =  (Edg
`  G )
114, 103cyclfrgrrn2 27151 . . . . . 6  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) ) )
1211adantlr 751 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) ) )
13 preq1 4268 . . . . . . . . . . . . . . . 16  |-  ( a  =  N  ->  { a ,  b }  =  { N ,  b } )
1413eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( a  =  N  ->  ( { a ,  b }  e.  (Edg `  G )  <->  { N ,  b }  e.  (Edg `  G ) ) )
15 preq2 4269 . . . . . . . . . . . . . . . 16  |-  ( a  =  N  ->  { c ,  a }  =  { c ,  N } )
1615eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( a  =  N  ->  ( { c ,  a }  e.  (Edg `  G )  <->  { c ,  N }  e.  (Edg
`  G ) ) )
1714, 163anbi13d 1401 . . . . . . . . . . . . . 14  |-  ( a  =  N  ->  (
( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) )  <-> 
( { N , 
b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) ) )
1817anbi2d 740 . . . . . . . . . . . . 13  |-  ( a  =  N  ->  (
( b  =/=  c  /\  ( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  <->  ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) ) ) )
19182rexbidv 3057 . . . . . . . . . . . 12  |-  ( a  =  N  ->  ( E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  <->  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { N , 
b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) ) ) )
2019rspcva 3307 . . . . . . . . . . 11  |-  ( ( N  e.  V  /\  A. a  e.  V  E. b  e.  V  E. c  e.  V  (
b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) ) )  ->  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) ) )
211adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  /\  N  e.  V )  /\  G  e. FriendGraph  )  ->  G  e. USGraph  )
22 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  /\  N  e.  V )  /\  G  e. FriendGraph  )  ->  b  =/=  c )
23 3simpb 1059 . . . . . . . . . . . . . . . . . 18  |-  ( ( { N ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) )  ->  ( { N ,  b }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )
2423ad3antlr 767 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  /\  N  e.  V )  /\  G  e. FriendGraph  )  ->  ( { N ,  b }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G
) ) )
255, 10usgr2edg1 26104 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. USGraph  /\  b  =/=  c )  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
)
2621, 22, 24, 25syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  /\  N  e.  V )  /\  G  e. FriendGraph  )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
)
2726a1d 25 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  /\  N  e.  V )  /\  G  e. FriendGraph  )  ->  ( 1  <  ( # `  V
)  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) )
2827ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( b  =/=  c  /\  ( { N , 
b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) )  /\  N  e.  V )  ->  ( G  e. FriendGraph  ->  ( 1  <  ( # `  V
)  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) ) )
2928ex 450 . . . . . . . . . . . . 13  |-  ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) )  ->  ( N  e.  V  ->  ( G  e. FriendGraph  ->  ( 1  < 
( # `  V )  ->  -.  E! x  e.  dom  (iEdg `  G
) N  e.  ( (iEdg `  G ) `  x ) ) ) ) )
3029a1i 11 . . . . . . . . . . . 12  |-  ( ( b  e.  V  /\  c  e.  V )  ->  ( ( b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  N }  e.  (Edg `  G )
) )  ->  ( N  e.  V  ->  ( G  e. FriendGraph  ->  ( 1  <  ( # `  V
)  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) ) ) ) )
3130rexlimivv 3036 . . . . . . . . . . 11  |-  ( E. b  e.  V  E. c  e.  V  (
b  =/=  c  /\  ( { N ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  N }  e.  (Edg
`  G ) ) )  ->  ( N  e.  V  ->  ( G  e. FriendGraph  ->  ( 1  < 
( # `  V )  ->  -.  E! x  e.  dom  (iEdg `  G
) N  e.  ( (iEdg `  G ) `  x ) ) ) ) )
3220, 31syl 17 . . . . . . . . . 10  |-  ( ( N  e.  V  /\  A. a  e.  V  E. b  e.  V  E. c  e.  V  (
b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) ) )  ->  ( N  e.  V  ->  ( G  e. FriendGraph  ->  ( 1  <  ( # `  V
)  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) ) ) )
3332ex 450 . . . . . . . . 9  |-  ( N  e.  V  ->  ( A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  ->  ( N  e.  V  ->  ( G  e. FriendGraph  ->  ( 1  < 
( # `  V )  ->  -.  E! x  e.  dom  (iEdg `  G
) N  e.  ( (iEdg `  G ) `  x ) ) ) ) ) )
3433pm2.43a 54 . . . . . . . 8  |-  ( N  e.  V  ->  ( A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  ->  ( G  e. FriendGraph 
->  ( 1  <  ( # `
 V )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G ) `  x
) ) ) ) )
3534com24 95 . . . . . . 7  |-  ( N  e.  V  ->  (
1  <  ( # `  V
)  ->  ( G  e. FriendGraph 
->  ( A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  a }  e.  (Edg `  G
) ) )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G ) `  x
) ) ) ) )
3635com3r 87 . . . . . 6  |-  ( G  e. FriendGraph  ->  ( N  e.  V  ->  ( 1  <  ( # `  V
)  ->  ( A. a  e.  V  E. b  e.  V  E. c  e.  V  (
b  =/=  c  /\  ( { a ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) ) ) )
3736imp31 448 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  ( A. a  e.  V  E. b  e.  V  E. c  e.  V  ( b  =/=  c  /\  ( { a ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  a }  e.  (Edg `  G ) ) )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )
) )
3812, 37mpd 15 . . . 4  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G ) `  x
) )
39 fvex 6201 . . . . . . . . 9  |-  (iEdg `  G )  e.  _V
4039dmex 7099 . . . . . . . 8  |-  dom  (iEdg `  G )  e.  _V
4140a1i 11 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  dom  (iEdg `  G )  e. 
_V )
42 rabexg 4812 . . . . . . 7  |-  ( dom  (iEdg `  G )  e.  _V  ->  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) }  e.  _V )
43 hash1snb 13207 . . . . . . 7  |-  ( { x  e.  dom  (iEdg `  G )  |  N  e.  ( (iEdg `  G
) `  x ) }  e.  _V  ->  ( ( # `  {
x  e.  dom  (iEdg `  G )  |  N  e.  ( (iEdg `  G
) `  x ) } )  =  1  <->  E. i { x  e. 
dom  (iEdg `  G )  |  N  e.  (
(iEdg `  G ) `  x ) }  =  { i } ) )
4441, 42, 433syl 18 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  (
( # `  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) } )  =  1  <->  E. i { x  e. 
dom  (iEdg `  G )  |  N  e.  (
(iEdg `  G ) `  x ) }  =  { i } ) )
45 reusn 4262 . . . . . 6  |-  ( E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G
) `  x )  <->  E. i { x  e. 
dom  (iEdg `  G )  |  N  e.  (
(iEdg `  G ) `  x ) }  =  { i } )
4644, 45syl6bbr 278 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  (
( # `  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) } )  =  1  <-> 
E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G ) `  x
) ) )
4746necon3abid 2830 . . . 4  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  (
( # `  { x  e.  dom  (iEdg `  G
)  |  N  e.  ( (iEdg `  G
) `  x ) } )  =/=  1  <->  -.  E! x  e.  dom  (iEdg `  G ) N  e.  ( (iEdg `  G ) `  x
) ) )
4838, 47mpbird 247 . . 3  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  ( # `
 { x  e. 
dom  (iEdg `  G )  |  N  e.  (
(iEdg `  G ) `  x ) } )  =/=  1 )
499, 48eqnetrd 2861 . 2  |-  ( ( ( G  e. FriendGraph  /\  N  e.  V )  /\  1  <  ( # `  V
) )  ->  (
(VtxDeg `  G ) `  N )  =/=  1
)
5049ex 450 1  |-  ( ( G  e. FriendGraph  /\  N  e.  V )  ->  (
1  <  ( # `  V
)  ->  ( (VtxDeg `  G ) `  N
)  =/=  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   ` cfv 5888   1c1 9937    < clt 10074   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USGraph cusgr 26044  VtxDegcvtxdg 26361   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-vtxdg 26362  df-frgr 27121
This theorem is referenced by:  vdgn1frgrv3  27161  vdgfrgrgt2  27162
  Copyright terms: Public domain W3C validator