MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkwwlkinj Structured version   Visualization version   Unicode version

Theorem wlkwwlkinj 26782
Description: Lemma 2 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wlkwwlkbij.t  |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }
wlkwwlkbij.w  |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
wlkwwlkbij.f  |-  F  =  ( t  e.  T  |->  ( 2nd `  t
) )
Assertion
Ref Expression
wlkwwlkinj  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T -1-1-> W )
Distinct variable groups:    G, p, t, w    N, p, t, w    P, p, t, w   
t, T, w    t, V    t, W    w, F    w, V
Allowed substitution hints:    T( p)    F( t, p)    V( p)    W( w, p)

Proof of Theorem wlkwwlkinj
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 26071 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
2 wlkwwlkbij.t . . . 4  |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P ) }
3 wlkwwlkbij.w . . . 4  |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P }
4 wlkwwlkbij.f . . . 4  |-  F  =  ( t  e.  T  |->  ( 2nd `  t
) )
52, 3, 4wlkwwlkfun 26781 . . 3  |-  ( ( G  e. UPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T --> W )
61, 5syl3an1 1359 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T --> W )
7 fveq2 6191 . . . . . . 7  |-  ( t  =  v  ->  ( 2nd `  t )  =  ( 2nd `  v
) )
8 fvex 6201 . . . . . . 7  |-  ( 2nd `  v )  e.  _V
97, 4, 8fvmpt 6282 . . . . . 6  |-  ( v  e.  T  ->  ( F `  v )  =  ( 2nd `  v
) )
10 fveq2 6191 . . . . . . 7  |-  ( t  =  w  ->  ( 2nd `  t )  =  ( 2nd `  w
) )
11 fvex 6201 . . . . . . 7  |-  ( 2nd `  w )  e.  _V
1210, 4, 11fvmpt 6282 . . . . . 6  |-  ( w  e.  T  ->  ( F `  w )  =  ( 2nd `  w
) )
139, 12eqeqan12d 2638 . . . . 5  |-  ( ( v  e.  T  /\  w  e.  T )  ->  ( ( F `  v )  =  ( F `  w )  <-> 
( 2nd `  v
)  =  ( 2nd `  w ) ) )
1413adantl 482 . . . 4  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
v  e.  T  /\  w  e.  T )
)  ->  ( ( F `  v )  =  ( F `  w )  <->  ( 2nd `  v )  =  ( 2nd `  w ) ) )
15 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  v  ->  ( 1st `  p )  =  ( 1st `  v
) )
1615fveq2d 6195 . . . . . . . . 9  |-  ( p  =  v  ->  ( # `
 ( 1st `  p
) )  =  (
# `  ( 1st `  v ) ) )
1716eqeq1d 2624 . . . . . . . 8  |-  ( p  =  v  ->  (
( # `  ( 1st `  p ) )  =  N  <->  ( # `  ( 1st `  v ) )  =  N ) )
18 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  v  ->  ( 2nd `  p )  =  ( 2nd `  v
) )
1918fveq1d 6193 . . . . . . . . 9  |-  ( p  =  v  ->  (
( 2nd `  p
) `  0 )  =  ( ( 2nd `  v ) `  0
) )
2019eqeq1d 2624 . . . . . . . 8  |-  ( p  =  v  ->  (
( ( 2nd `  p
) `  0 )  =  P  <->  ( ( 2nd `  v ) `  0
)  =  P ) )
2117, 20anbi12d 747 . . . . . . 7  |-  ( p  =  v  ->  (
( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P )  <->  ( ( # `
 ( 1st `  v
) )  =  N  /\  ( ( 2nd `  v ) `  0
)  =  P ) ) )
2221, 2elrab2 3366 . . . . . 6  |-  ( v  e.  T  <->  ( v  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  v ) )  =  N  /\  (
( 2nd `  v
) `  0 )  =  P ) ) )
23 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  w  ->  ( 1st `  p )  =  ( 1st `  w
) )
2423fveq2d 6195 . . . . . . . . 9  |-  ( p  =  w  ->  ( # `
 ( 1st `  p
) )  =  (
# `  ( 1st `  w ) ) )
2524eqeq1d 2624 . . . . . . . 8  |-  ( p  =  w  ->  (
( # `  ( 1st `  p ) )  =  N  <->  ( # `  ( 1st `  w ) )  =  N ) )
26 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  w  ->  ( 2nd `  p )  =  ( 2nd `  w
) )
2726fveq1d 6193 . . . . . . . . 9  |-  ( p  =  w  ->  (
( 2nd `  p
) `  0 )  =  ( ( 2nd `  w ) `  0
) )
2827eqeq1d 2624 . . . . . . . 8  |-  ( p  =  w  ->  (
( ( 2nd `  p
) `  0 )  =  P  <->  ( ( 2nd `  w ) `  0
)  =  P ) )
2925, 28anbi12d 747 . . . . . . 7  |-  ( p  =  w  ->  (
( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  P )  <->  ( ( # `
 ( 1st `  w
) )  =  N  /\  ( ( 2nd `  w ) `  0
)  =  P ) ) )
3029, 2elrab2 3366 . . . . . 6  |-  ( w  e.  T  <->  ( w  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  w ) )  =  N  /\  (
( 2nd `  w
) `  0 )  =  P ) ) )
3122, 30anbi12i 733 . . . . 5  |-  ( ( v  e.  T  /\  w  e.  T )  <->  ( ( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) ) )
32 3simpb 1059 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  ( G  e. USPGraph  /\  N  e. 
NN0 ) )
3332adantr 481 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) ) )  ->  ( G  e. USPGraph 
/\  N  e.  NN0 ) )
34 simpl 473 . . . . . . . . 9  |-  ( ( ( # `  ( 1st `  v ) )  =  N  /\  (
( 2nd `  v
) `  0 )  =  P )  ->  ( # `
 ( 1st `  v
) )  =  N )
3534anim2i 593 . . . . . . . 8  |-  ( ( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  -> 
( v  e.  (Walks `  G )  /\  ( # `
 ( 1st `  v
) )  =  N ) )
3635adantr 481 . . . . . . 7  |-  ( ( ( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) )  ->  ( v  e.  (Walks `  G )  /\  ( # `  ( 1st `  v ) )  =  N ) )
3736adantl 482 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) ) )  ->  ( v  e.  (Walks `  G )  /\  ( # `  ( 1st `  v ) )  =  N ) )
38 simpl 473 . . . . . . . . 9  |-  ( ( ( # `  ( 1st `  w ) )  =  N  /\  (
( 2nd `  w
) `  0 )  =  P )  ->  ( # `
 ( 1st `  w
) )  =  N )
3938anim2i 593 . . . . . . . 8  |-  ( ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) )  -> 
( w  e.  (Walks `  G )  /\  ( # `
 ( 1st `  w
) )  =  N ) )
4039adantl 482 . . . . . . 7  |-  ( ( ( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) )  ->  ( w  e.  (Walks `  G )  /\  ( # `  ( 1st `  w ) )  =  N ) )
4140adantl 482 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) ) )  ->  ( w  e.  (Walks `  G )  /\  ( # `  ( 1st `  w ) )  =  N ) )
42 uspgr2wlkeq2 26543 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  N  e.  NN0 )  /\  (
v  e.  (Walks `  G )  /\  ( # `
 ( 1st `  v
) )  =  N )  /\  ( w  e.  (Walks `  G
)  /\  ( # `  ( 1st `  w ) )  =  N ) )  ->  ( ( 2nd `  v )  =  ( 2nd `  w )  ->  v  =  w ) )
4333, 37, 41, 42syl3anc 1326 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
( v  e.  (Walks `  G )  /\  (
( # `  ( 1st `  v ) )  =  N  /\  ( ( 2nd `  v ) `
 0 )  =  P ) )  /\  ( w  e.  (Walks `  G )  /\  (
( # `  ( 1st `  w ) )  =  N  /\  ( ( 2nd `  w ) `
 0 )  =  P ) ) ) )  ->  ( ( 2nd `  v )  =  ( 2nd `  w
)  ->  v  =  w ) )
4431, 43sylan2b 492 . . . 4  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
v  e.  T  /\  w  e.  T )
)  ->  ( ( 2nd `  v )  =  ( 2nd `  w
)  ->  v  =  w ) )
4514, 44sylbid 230 . . 3  |-  ( ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  /\  (
v  e.  T  /\  w  e.  T )
)  ->  ( ( F `  v )  =  ( F `  w )  ->  v  =  w ) )
4645ralrimivva 2971 . 2  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  A. v  e.  T  A. w  e.  T  ( ( F `  v )  =  ( F `  w )  ->  v  =  w ) )
47 dff13 6512 . 2  |-  ( F : T -1-1-> W  <->  ( F : T --> W  /\  A. v  e.  T  A. w  e.  T  (
( F `  v
)  =  ( F `
 w )  -> 
v  =  w ) ) )
486, 46, 47sylanbrc 698 1  |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e. 
NN0 )  ->  F : T -1-1-> W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   NN0cn0 11292   #chash 13117   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlkwwlkbij  26784
  Copyright terms: Public domain W3C validator