MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem2 Structured version   Visualization version   Unicode version

Theorem prodmolem2 14665
Description: Lemma for prodmo 14666. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmo.3  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
Assertion
Ref Expression
prodmolem2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Distinct variable groups:    A, k, n    k, F, n    ph, k, n    A, f, j, m    B, j    f, F, j, k, m    ph, f    x, f    z, f    j, G    j, k, m, ph    x, j    k, m, x    ph, m    x, m    z, m
Allowed substitution hints:    ph( x, y, z)    A( x, y, z)    B( x, y, z, f, k, m, n)    F( x, y, z)    G( x, y, z, f, k, m, n)

Proof of Theorem prodmolem2
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1059 . . 3  |-  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x )  ->  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
21reximi 3011 . 2  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  x.  ,  F )  ~~>  x ) )
3 fveq2 6191 . . . . . 6  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
43sseq2d 3633 . . . . 5  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
5 seqeq1 12804 . . . . . 6  |-  ( m  =  w  ->  seq m (  x.  ,  F )  =  seq w (  x.  ,  F ) )
65breq1d 4663 . . . . 5  |-  ( m  =  w  ->  (  seq m (  x.  ,  F )  ~~>  x  <->  seq w
(  x.  ,  F
)  ~~>  x ) )
74, 6anbi12d 747 . . . 4  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  x.  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x ) ) )
87cbvrexv 3172 . . 3  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  x.  ,  F
)  ~~>  x )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x ) )
9 reeanv 3107 . . . . 5  |-  ( E. w  e.  ZZ  E. m  e.  NN  (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
10 simprlr 803 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  x )
11 simprll 802 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ( ZZ>= `  w
) )
12 uzssz 11707 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  w )  C_  ZZ
13 zssre 11384 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  RR
1412, 13sstri 3612 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= `  w )  C_  RR
1511, 14syl6ss 3615 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  RR )
16 ltso 10118 . . . . . . . . . . . . . . 15  |-  <  Or  RR
17 soss 5053 . . . . . . . . . . . . . . 15  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
1815, 16, 17mpisyl 21 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  <  Or  A )
19 fzfi 12771 . . . . . . . . . . . . . . 15  |-  ( 1 ... m )  e. 
Fin
20 ovex 6678 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ... m )  e. 
_V
2120f1oen 7976 . . . . . . . . . . . . . . . . 17  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  ( 1 ... m )  ~~  A )
2221ad2antll 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  ~~  A )
2322ensymd 8007 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  ~~  ( 1 ... m ) )
24 enfii 8177 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
2519, 23, 24sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  e.  Fin )
26 fz1iso 13246 . . . . . . . . . . . . . 14  |-  ( (  <  Or  A  /\  A  e.  Fin )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) )
2718, 25, 26syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) )
28 prodmo.1 . . . . . . . . . . . . . . . 16  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
29 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  ->  ph )
30 prodmo.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3129, 30sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  /\  ( ( ( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  /\  k  e.  A )  ->  B  e.  CC )
32 prodmo.3 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
33 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)
34 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  ->  m  e.  NN )
35 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  ->  w  e.  ZZ )
36 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) )  ->  A  C_  ( ZZ>= `  w )
)
3736adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  ->  A  C_  ( ZZ>= `  w
) )
38 simprlr 803 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
39 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  -> 
g  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
4028, 31, 32, 33, 34, 35, 37, 38, 39prodmolem2a 14664 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
) ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
4140expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( g  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
)  ->  seq w
(  x.  ,  F
)  ~~>  (  seq 1
(  x.  ,  G
) `  m )
) )
4241exlimdv 1861 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( E. g  g 
Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) ) )
4327, 42mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
44 climuni 14283 . . . . . . . . . . . 12  |-  ( (  seq w (  x.  ,  F )  ~~>  x  /\  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  m )
)
4510, 43, 44syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  m
) )
46 eqeq2 2633 . . . . . . . . . . 11  |-  ( z  =  (  seq 1
(  x.  ,  G
) `  m )  ->  ( x  =  z  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )
4745, 46syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( z  =  (  seq 1 (  x.  ,  G ) `  m )  ->  x  =  z ) )
4847expr 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x ) )  ->  ( f : ( 1 ... m ) -1-1-onto-> A  ->  ( z  =  (  seq 1
(  x.  ,  G
) `  m )  ->  x  =  z ) ) )
4948impd 447 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x ) )  ->  ( (
f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  z ) )
5049exlimdv 1861 . . . . . . 7  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x ) )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
5150expimpd 629 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  -> 
( ( ( A 
C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
5251rexlimdvva 3038 . . . . 5  |-  ( ph  ->  ( E. w  e.  ZZ  E. m  e.  NN  ( ( A 
C_  ( ZZ>= `  w
)  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
539, 52syl5bir 233 . . . 4  |-  ( ph  ->  ( ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
5453expdimp 453 . . 3  |-  ( (
ph  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq w (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
558, 54sylan2b 492 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
562, 55sylan2 491 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  prodmo  14666
  Copyright terms: Public domain W3C validator