MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthons3 Structured version   Visualization version   Unicode version

Theorem usgr2wspthons3 26857
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.)
Hypotheses
Ref Expression
usgr2wspthon0.v  |-  V  =  (Vtx `  G )
usgr2wspthon0.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
usgr2wspthons3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <-> 
( A  =/=  C  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E ) ) )

Proof of Theorem usgr2wspthons3
StepHypRef Expression
1 2nn 11185 . . . . . 6  |-  2  e.  NN
2 ne0i 3921 . . . . . 6  |-  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C )  -> 
( A ( 2 WSPathsNOn  G ) C )  =/=  (/) )
3 wspthsnonn0vne 26813 . . . . . 6  |-  ( ( 2  e.  NN  /\  ( A ( 2 WSPathsNOn  G
) C )  =/=  (/) )  ->  A  =/= 
C )
41, 2, 3sylancr 695 . . . . 5  |-  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C )  ->  A  =/=  C )
5 simplr 792 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  /\  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C ) )  ->  A  =/=  C )
6 simpll 790 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  G  e. USGraph  )
7 3simpb 1059 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  C  e.  V
) )
87ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  ( A  e.  V  /\  C  e.  V ) )
9 simpr 477 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  A  =/=  C )
106, 8, 93jca 1242 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C ) )
11 usgr2wspthon0.v . . . . . . . . . . . 12  |-  V  =  (Vtx `  G )
1211wpthswwlks2on 26854 . . . . . . . . . . 11  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( A
( 2 WSPathsNOn  G ) C )  =  ( A ( 2 WWalksNOn  G
) C ) )
1312eleq2d 2687 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <->  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
1410, 13syl 17 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <->  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
1514biimpa 501 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  /\  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C ) )  ->  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) )
165, 15jca 554 . . . . . . 7  |-  ( ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  A  =/=  C )  /\  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C ) )  ->  ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) )
1716exp31 630 . . . . . 6  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  =/=  C  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  ->  ( A  =/= 
C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) ) ) )
1817com13 88 . . . . 5  |-  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C )  -> 
( A  =/=  C  ->  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) ) )
194, 18mpd 15 . . . 4  |-  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C )  -> 
( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C ) ) ) )
2019com12 32 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  ->  ( A  =/= 
C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) ) )
2113bicomd 213 . . . . . 6  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  C  e.  V )  /\  A  =/=  C
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <->  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) ) )
2210, 21syl 17 . . . . 5  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <->  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) ) )
2322biimpd 219 . . . 4  |-  ( ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  A  =/=  C )  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  ->  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) ) )
2423expimpd 629 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  ->  <" A B C ">  e.  ( A ( 2 WSPathsNOn  G
) C ) ) )
2520, 24impbid 202 . 2  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <-> 
( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C ) ) ) )
26 usgrumgr 26074 . . . . 5  |-  ( G  e. USGraph  ->  G  e. UMGraph  )
27 usgr2wspthon0.e . . . . . 6  |-  E  =  (Edg `  G )
2811, 27umgrwwlks2on 26850 . . . . 5  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <-> 
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )
2926, 28sylan 488 . . . 4  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <-> 
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )
3029anbi2d 740 . . 3  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  <->  ( A  =/= 
C  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) ) )
31 3anass 1042 . . 3  |-  ( ( A  =/=  C  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  <->  ( A  =/= 
C  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
3230, 31syl6bbr 278 . 2  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  =/=  C  /\  <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C ) )  <->  ( A  =/= 
C  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )
3325, 32bitrd 268 1  |-  ( ( G  e. USGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WSPathsNOn  G ) C )  <-> 
( A  =/=  C  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   {cpr 4179   ` cfv 5888  (class class class)co 6650   NNcn 11020   2c2 11070   <"cs3 13587  Vtxcvtx 25874  Edgcedg 25939   UMGraph cumgr 25976   USGraph cusgr 26044   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  usgr2wspthon  26858
  Copyright terms: Public domain W3C validator