MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopy Structured version   Visualization version   Unicode version

Theorem acopy 25724
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p  |-  P  =  ( Base `  G
)
dfcgra2.i  |-  I  =  (Itv `  G )
dfcgra2.m  |-  .-  =  ( dist `  G )
dfcgra2.g  |-  ( ph  ->  G  e. TarskiG )
dfcgra2.a  |-  ( ph  ->  A  e.  P )
dfcgra2.b  |-  ( ph  ->  B  e.  P )
dfcgra2.c  |-  ( ph  ->  C  e.  P )
dfcgra2.d  |-  ( ph  ->  D  e.  P )
dfcgra2.e  |-  ( ph  ->  E  e.  P )
dfcgra2.f  |-  ( ph  ->  F  e.  P )
acopy.l  |-  L  =  (LineG `  G )
acopy.1  |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
acopy.2  |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
Assertion
Ref Expression
acopy  |-  ( ph  ->  E. f  e.  P  ( <" A B C "> (cgrA `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
Distinct variable groups:    .- , f    A, f    B, f    C, f    D, f    f, E    f, F    f, G    f, I    P, f    f, L    ph, f

Proof of Theorem acopy
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4  |-  P  =  ( Base `  G
)
2 dfcgra2.m . . . 4  |-  .-  =  ( dist `  G )
3 dfcgra2.i . . . 4  |-  I  =  (Itv `  G )
4 acopy.l . . . 4  |-  L  =  (LineG `  G )
5 eqid 2622 . . . 4  |-  (hlG `  G )  =  (hlG
`  G )
6 dfcgra2.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
76ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  G  e. TarskiG )
8 dfcgra2.a . . . . 5  |-  ( ph  ->  A  e.  P )
98ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  A  e.  P )
10 dfcgra2.b . . . . 5  |-  ( ph  ->  B  e.  P )
1110ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  B  e.  P )
12 dfcgra2.c . . . . 5  |-  ( ph  ->  C  e.  P )
1312ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  C  e.  P )
14 simplr 792 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
d  e.  P )
15 dfcgra2.e . . . . 5  |-  ( ph  ->  E  e.  P )
1615ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  E  e.  P )
17 dfcgra2.f . . . . 5  |-  ( ph  ->  F  e.  P )
1817ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  F  e.  P )
19 acopy.1 . . . . 5  |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
2019ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )
21 dfcgra2.d . . . . . 6  |-  ( ph  ->  D  e.  P )
2221ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  D  e.  P )
23 acopy.2 . . . . . 6  |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
2423ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )
25 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
d ( (hlG `  G ) `  E
) D )
261, 3, 5, 14, 22, 16, 7, 4, 25hlln 25502 . . . . 5  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
d  e.  ( D L E ) )
271, 3, 5, 14, 22, 16, 7, 25hlne1 25500 . . . . 5  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
d  =/=  E )
281, 3, 4, 7, 22, 16, 18, 14, 24, 26, 27ncolncol 25541 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  -.  ( d  e.  ( E L F )  \/  E  =  F ) )
29 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
( E  .-  d
)  =  ( B 
.-  A ) )
3029eqcomd 2628 . . . . 5  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
( B  .-  A
)  =  ( E 
.-  d ) )
311, 2, 3, 7, 11, 9, 16, 14, 30tgcgrcomlr 25375 . . . 4  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
( A  .-  B
)  =  ( d 
.-  E ) )
321, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 18, 20, 28, 31trgcopy 25696 . . 3  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  E. f  e.  P  ( <" A B C "> (cgrG `  G ) <" d E f ">  /\  f ( (hpG `  G ) `  (
d L E ) ) F ) )
337ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  G  e. TarskiG )
349ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  A  e.  P
)
3511ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  B  e.  P
)
3613ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  C  e.  P
)
3714ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  d  e.  P
)
3816ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  E  e.  P
)
39 simplr 792 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  f  e.  P
)
401, 3, 4, 6, 8, 10, 12, 19ncolne1 25520 . . . . . . . . 9  |-  ( ph  ->  A  =/=  B )
4140ad4antr 768 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  A  =/=  B
)
421, 4, 3, 6, 10, 12, 8, 19ncolrot1 25457 . . . . . . . . . 10  |-  ( ph  ->  -.  ( B  e.  ( C L A )  \/  C  =  A ) )
431, 3, 4, 6, 10, 12, 8, 42ncolne1 25520 . . . . . . . . 9  |-  ( ph  ->  B  =/=  C )
4443ad4antr 768 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  B  =/=  C
)
45 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  <" A B C "> (cgrG `  G ) <" d E f "> )
461, 3, 33, 5, 34, 35, 36, 37, 38, 39, 41, 44, 45cgrcgra 25713 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  <" A B C "> (cgrA `  G ) <" d E f "> )
4722ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  D  e.  P
)
4825ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  d ( (hlG
`  G ) `  E ) D )
491, 3, 5, 37, 47, 38, 33, 48hlcomd 25499 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  D ( (hlG
`  G ) `  E ) d )
501, 3, 5, 33, 34, 35, 36, 37, 38, 39, 46, 47, 49cgrahl1 25708 . . . . . 6  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  <" A B C "> (cgrG `  G ) <" d E f "> )  ->  <" A B C "> (cgrA `  G ) <" D E f "> )
5150ex 450 . . . . 5  |-  ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG
`  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  ->  ( <" A B C "> (cgrG `  G ) <" d E f ">  ->  <" A B C "> (cgrA `  G ) <" D E f "> ) )
52 simpr 477 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  f ( (hpG
`  G ) `  ( d L E ) ) F )
537ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  G  e. TarskiG )
5414ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  d  e.  P
)
5516ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  E  e.  P
)
5627ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  d  =/=  E
)
571, 3, 4, 6, 21, 15, 17, 23ncolne1 25520 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  E )
581, 3, 4, 6, 21, 15, 57tgelrnln 25525 . . . . . . . . . . 11  |-  ( ph  ->  ( D L E )  e.  ran  L
)
5958ad4antr 768 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  ( D L E )  e.  ran  L )
6026ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  d  e.  ( D L E ) )
611, 3, 4, 6, 21, 15, 57tglinerflx2 25529 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  ( D L E ) )
6261ad4antr 768 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  E  e.  ( D L E ) )
631, 3, 4, 53, 54, 55, 56, 56, 59, 60, 62tglinethru 25531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  ( D L E )  =  ( d L E ) )
6463fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  ( (hpG `  G ) `  ( D L E ) )  =  ( (hpG `  G ) `  (
d L E ) ) )
6564breqd 4664 . . . . . . 7  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  ( f ( (hpG `  G ) `  ( D L E ) ) F  <->  f (
(hpG `  G ) `  ( d L E ) ) F ) )
6652, 65mpbird 247 . . . . . 6  |-  ( ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG `  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  /\  f (
(hpG `  G ) `  ( d L E ) ) F )  ->  f ( (hpG
`  G ) `  ( D L E ) ) F )
6766ex 450 . . . . 5  |-  ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG
`  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  ->  ( f
( (hpG `  G
) `  ( d L E ) ) F  ->  f ( (hpG
`  G ) `  ( D L E ) ) F ) )
6851, 67anim12d 586 . . . 4  |-  ( ( ( ( ph  /\  d  e.  P )  /\  ( d ( (hlG
`  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )  /\  f  e.  P
)  ->  ( ( <" A B C "> (cgrG `  G ) <" d E f ">  /\  f ( (hpG `  G ) `  (
d L E ) ) F )  -> 
( <" A B C "> (cgrA `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) ) )
6968reximdva 3017 . . 3  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  -> 
( E. f  e.  P  ( <" A B C "> (cgrG `  G ) <" d E f ">  /\  f ( (hpG `  G ) `  (
d L E ) ) F )  ->  E. f  e.  P  ( <" A B C "> (cgrA `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) ) )
7032, 69mpd 15 . 2  |-  ( ( ( ph  /\  d  e.  P )  /\  (
d ( (hlG `  G ) `  E
) D  /\  ( E  .-  d )  =  ( B  .-  A
) ) )  ->  E. f  e.  P  ( <" A B C "> (cgrA `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
7140necomd 2849 . . 3  |-  ( ph  ->  B  =/=  A )
721, 3, 5, 15, 10, 8, 6, 21, 2, 57, 71hlcgrex 25511 . 2  |-  ( ph  ->  E. d  e.  P  ( d ( (hlG
`  G ) `  E ) D  /\  ( E  .-  d )  =  ( B  .-  A ) ) )
7370, 72r19.29a 3078 1  |-  ( ph  ->  E. f  e.  P  ( <" A B C "> (cgrA `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-ismt 25428  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667  df-cgra 25700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator