| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acunirnmpt | Structured version Visualization version Unicode version | ||
| Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.) |
| Ref | Expression |
|---|---|
| acunirnmpt.0 |
|
| acunirnmpt.1 |
|
| acunirnmpt.2 |
|
| Ref | Expression |
|---|---|
| acunirnmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . 6
| |
| 2 | simplll 798 |
. . . . . . 7
| |
| 3 | simplr 792 |
. . . . . . 7
| |
| 4 | acunirnmpt.1 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . . . 6
|
| 6 | 1, 5 | eqnetrd 2861 |
. . . . 5
|
| 7 | acunirnmpt.2 |
. . . . . . . . 9
| |
| 8 | 7 | eleq2i 2693 |
. . . . . . . 8
|
| 9 | vex 3203 |
. . . . . . . . 9
| |
| 10 | eqid 2622 |
. . . . . . . . . 10
| |
| 11 | 10 | elrnmpt 5372 |
. . . . . . . . 9
|
| 12 | 9, 11 | ax-mp 5 |
. . . . . . . 8
|
| 13 | 8, 12 | bitri 264 |
. . . . . . 7
|
| 14 | 13 | biimpi 206 |
. . . . . 6
|
| 15 | 14 | adantl 482 |
. . . . 5
|
| 16 | 6, 15 | r19.29a 3078 |
. . . 4
|
| 17 | 16 | ralrimiva 2966 |
. . 3
|
| 18 | acunirnmpt.0 |
. . . . . 6
| |
| 19 | mptexg 6484 |
. . . . . 6
| |
| 20 | rnexg 7098 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . 5
|
| 22 | 7, 21 | syl5eqel 2705 |
. . . 4
|
| 23 | raleq 3138 |
. . . . . 6
| |
| 24 | id 22 |
. . . . . . . . 9
| |
| 25 | unieq 4444 |
. . . . . . . . 9
| |
| 26 | 24, 25 | feq23d 6040 |
. . . . . . . 8
|
| 27 | raleq 3138 |
. . . . . . . 8
| |
| 28 | 26, 27 | anbi12d 747 |
. . . . . . 7
|
| 29 | 28 | exbidv 1850 |
. . . . . 6
|
| 30 | 23, 29 | imbi12d 334 |
. . . . 5
|
| 31 | vex 3203 |
. . . . . 6
| |
| 32 | 31 | ac5b 9300 |
. . . . 5
|
| 33 | 30, 32 | vtoclg 3266 |
. . . 4
|
| 34 | 22, 33 | syl 17 |
. . 3
|
| 35 | 17, 34 | mpd 15 |
. 2
|
| 36 | 15 | adantr 481 |
. . . . . . 7
|
| 37 | simpllr 799 |
. . . . . . . . . 10
| |
| 38 | simpr 477 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | eleqtrd 2703 |
. . . . . . . . 9
|
| 40 | 39 | ex 450 |
. . . . . . . 8
|
| 41 | 40 | reximdva 3017 |
. . . . . . 7
|
| 42 | 36, 41 | mpd 15 |
. . . . . 6
|
| 43 | 42 | ex 450 |
. . . . 5
|
| 44 | 43 | ralimdva 2962 |
. . . 4
|
| 45 | 44 | anim2d 589 |
. . 3
|
| 46 | 45 | eximdv 1846 |
. 2
|
| 47 | 35, 46 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-wrecs 7407 df-recs 7468 df-en 7956 df-card 8765 df-ac 8939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |