MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   Unicode version

Theorem alephom 9407
Description: From canth2 8113, we know that  (
aleph `  0 )  < 
( 2 ^ om ), but we cannot prove that  ( 2 ^ om )  =  ( aleph `  1 ) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement  ( aleph `  A )  <  ( 2 ^ om ) is consistent for any ordinal  A). However, we can prove that  ( 2 ^ om ) is not equal to  ( aleph `  om ), nor  ( aleph `  ( aleph `  om ) ), on cofinality grounds, because by Konig's Theorem konigth 9391 (in the form of cfpwsdom 9406), 
( 2 ^ om ) has uncountable cofinality, which eliminates limit alephs like  ( aleph `  om ). (The first limit aleph that is not eliminated is  ( aleph `  ( aleph `  1
) ), which has cofinality  ( aleph `  1
).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom  |-  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om )

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 8097 . 2  |-  -.  om  ~<  om
2 2onn 7720 . . . . . 6  |-  2o  e.  om
32elexi 3213 . . . . 5  |-  2o  e.  _V
4 domrefg 7990 . . . . 5  |-  ( 2o  e.  _V  ->  2o  ~<_  2o )
53cfpwsdom 9406 . . . . 5  |-  ( 2o  ~<_  2o  ->  ( aleph `  (/) )  ~<  ( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) ) )
63, 4, 5mp2b 10 . . . 4  |-  ( aleph `  (/) )  ~<  ( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )
7 aleph0 8889 . . . . . 6  |-  ( aleph `  (/) )  =  om
87a1i 11 . . . . 5  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( aleph `  (/) )  =  om )
97oveq2i 6661 . . . . . . . . . 10  |-  ( 2o 
^m  ( aleph `  (/) ) )  =  ( 2o  ^m  om )
109fveq2i 6194 . . . . . . . . 9  |-  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( card `  ( 2o  ^m  om ) )
1110eqeq1i 2627 . . . . . . . 8  |-  ( (
card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( aleph ` 
om )  <->  ( card `  ( 2o  ^m  om ) )  =  (
aleph `  om ) )
1211biimpri 218 . . . . . . 7  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( card `  ( 2o  ^m  ( aleph `  (/) ) ) )  =  ( aleph ` 
om ) )
1312fveq2d 6195 . . . . . 6  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  =  ( cf `  ( aleph ` 
om ) ) )
14 limom 7080 . . . . . . . 8  |-  Lim  om
15 alephsing 9098 . . . . . . . 8  |-  ( Lim 
om  ->  ( cf `  ( aleph `  om ) )  =  ( cf `  om ) )
1614, 15ax-mp 5 . . . . . . 7  |-  ( cf `  ( aleph `  om ) )  =  ( cf `  om )
17 cfom 9086 . . . . . . 7  |-  ( cf ` 
om )  =  om
1816, 17eqtri 2644 . . . . . 6  |-  ( cf `  ( aleph `  om ) )  =  om
1913, 18syl6eq 2672 . . . . 5  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  =  om )
208, 19breq12d 4666 . . . 4  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  -> 
( ( aleph `  (/) )  ~< 
( cf `  ( card `  ( 2o  ^m  ( aleph `  (/) ) ) ) )  <->  om  ~<  om )
)
216, 20mpbii 223 . . 3  |-  ( (
card `  ( 2o  ^m 
om ) )  =  ( aleph `  om )  ->  om  ~<  om )
2221necon3bi 2820 . 2  |-  ( -. 
om  ~<  om  ->  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om ) )
231, 22ax-mp 5 1  |-  ( card `  ( 2o  ^m  om ) )  =/=  ( aleph `  om )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   Lim wlim 5724   ` cfv 5888  (class class class)co 6650   omcom 7065   2oc2o 7554    ^m cmap 7857    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   alephcale 8762   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cf 8767  df-acn 8768  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator