MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Structured version   Visualization version   Unicode version

Theorem atantayl 24664
Description: The Taylor series for arctan ( A
). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1  |-  F  =  ( n  e.  NN  |->  ( ( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) ) )
Assertion
Ref Expression
atantayl  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  ,  F )  ~~>  (arctan `  A ) )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem atantayl
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  ZZ )
3 ax-icn 9995 . . . 4  |-  _i  e.  CC
4 halfcl 11257 . . . 4  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
53, 4mp1i 13 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( _i  /  2
)  e.  CC )
6 simpl 473 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  CC )
7 mulcl 10020 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
83, 6, 7sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( _i  x.  A
)  e.  CC )
98negcld 10379 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  -u ( _i  x.  A
)  e.  CC )
108absnegd 14188 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  =  ( abs `  ( _i  x.  A
) ) )
11 absmul 14034 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
123, 6, 11sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
13 absi 14026 . . . . . . . . . . 11  |-  ( abs `  _i )  =  1
1413oveq1i 6660 . . . . . . . . . 10  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
15 abscl 14018 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1615adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  RR )
1716recnd 10068 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  CC )
1817mulid2d 10058 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  x.  ( abs `  A ) )  =  ( abs `  A
) )
1914, 18syl5eq 2668 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( ( abs `  _i )  x.  ( abs `  A ) )  =  ( abs `  A
) )
2010, 12, 193eqtrd 2660 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  =  ( abs `  A ) )
21 simpr 477 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  <  1 )
2220, 21eqbrtrd 4675 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  <  1 )
23 logtayl 24406 . . . . . . 7  |-  ( (
-u ( _i  x.  A )  e.  CC  /\  ( abs `  -u (
_i  x.  A )
)  <  1 )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( -u ( _i  x.  A
) ^ n )  /  n ) ) )  ~~>  -u ( log `  (
1  -  -u (
_i  x.  A )
) ) )
249, 22, 23syl2anc 693 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) )  ~~> 
-u ( log `  (
1  -  -u (
_i  x.  A )
) ) )
25 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
26 subneg 10330 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  - 
-u ( _i  x.  A ) )  =  ( 1  +  ( _i  x.  A ) ) )
2725, 8, 26sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  -u (
_i  x.  A )
)  =  ( 1  +  ( _i  x.  A ) ) )
2827fveq2d 6195 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  -  -u (
_i  x.  A )
) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
2928negeqd 10275 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  -u ( log `  (
1  -  -u (
_i  x.  A )
) )  =  -u ( log `  ( 1  +  ( _i  x.  A ) ) ) )
3024, 29breqtrd 4679 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) )  ~~> 
-u ( log `  (
1  +  ( _i  x.  A ) ) ) )
31 seqex 12803 . . . . . 6  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) )  e. 
_V
3231a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  e.  _V )
3310, 22eqbrtrrd 4677 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  (
_i  x.  A )
)  <  1 )
34 logtayl 24406 . . . . . 6  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( abs `  ( _i  x.  A ) )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) )  ~~>  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )
358, 33, 34syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) )  ~~>  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )
36 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( -u ( _i  x.  A
) ^ n )  =  ( -u (
_i  x.  A ) ^ m ) )
37 id 22 . . . . . . . . . . 11  |-  ( n  =  m  ->  n  =  m )
3836, 37oveq12d 6668 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( -u ( _i  x.  A ) ^ n
)  /  n )  =  ( ( -u ( _i  x.  A
) ^ m )  /  m ) )
39 eqid 2622 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) )  =  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) )
40 ovex 6678 . . . . . . . . . 10  |-  ( (
-u ( _i  x.  A ) ^ m
)  /  m )  e.  _V
4138, 39, 40fvmpt 6282 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) `  m )  =  ( ( -u ( _i  x.  A ) ^
m )  /  m
) )
4241adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) `  m )  =  ( ( -u ( _i  x.  A
) ^ m )  /  m ) )
43 nnnn0 11299 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  NN0 )
44 expcl 12878 . . . . . . . . . 10  |-  ( (
-u ( _i  x.  A )  e.  CC  /\  m  e.  NN0 )  ->  ( -u ( _i  x.  A ) ^
m )  e.  CC )
459, 43, 44syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u (
_i  x.  A ) ^ m )  e.  CC )
46 nncn 11028 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  CC )
4746adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  e.  CC )
48 nnne0 11053 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  =/=  0 )
4948adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  =/=  0
)
5045, 47, 49divcld 10801 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u ( _i  x.  A
) ^ m )  /  m )  e.  CC )
5142, 50eqeltrd 2701 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) `  m )  e.  CC )
521, 2, 51serf 12829 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) ) : NN --> CC )
5352ffvelrnda 6359 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) ) `  k )  e.  CC )
54 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( _i  x.  A
) ^ n )  =  ( ( _i  x.  A ) ^
m ) )
5554, 37oveq12d 6668 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( ( _i  x.  A ) ^ n
)  /  n )  =  ( ( ( _i  x.  A ) ^ m )  /  m ) )
56 eqid 2622 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) )  =  ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n )  /  n ) )
57 ovex 6678 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
) ^ m )  /  m )  e. 
_V
5855, 56, 57fvmpt 6282 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  =  ( ( ( _i  x.  A
) ^ m )  /  m ) )
5958adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  =  ( ( ( _i  x.  A ) ^
m )  /  m
) )
60 expcl 12878 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  m  e.  NN0 )  -> 
( ( _i  x.  A ) ^ m
)  e.  CC )
618, 43, 60syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  A ) ^
m )  e.  CC )
6261, 47, 49divcld 10801 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  A ) ^ m )  /  m )  e.  CC )
6359, 62eqeltrd 2701 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  e.  CC )
641, 2, 63serf 12829 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) : NN --> CC )
6564ffvelrnda 6359 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) ) `  k
)  e.  CC )
66 simpr 477 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  NN )
6766, 1syl6eleq 2711 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  (
ZZ>= `  1 ) )
68 simpl 473 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( A  e.  CC  /\  ( abs `  A )  <  1
) )
69 elfznn 12370 . . . . . . 7  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
7068, 69, 51syl2an 494 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) `  m )  e.  CC )
7168, 69, 63syl2an 494 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  e.  CC )
7238, 55oveq12d 6668 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) )  =  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) ) )
73 eqid 2622 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) )  =  ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) )
74 ovex 6678 . . . . . . . . . 10  |-  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) )  e.  _V
7572, 73, 74fvmpt 6282 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  m )  =  ( ( ( -u (
_i  x.  A ) ^ m )  /  m )  -  (
( ( _i  x.  A ) ^ m
)  /  m ) ) )
7675adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  =  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) ) )
7742, 59oveq12d 6668 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) `  m ) )  =  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) ) )
7876, 77eqtr4d 2659 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  =  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) `  m ) ) )
7968, 69, 78syl2an 494 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  m )  =  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n )  /  n ) ) `  m ) ) )
8067, 70, 71, 79sersub 12844 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) ) `  k )  =  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) ) `  k
)  -  (  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  k ) ) )
811, 2, 30, 32, 35, 53, 65, 80climsub 14364 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  ~~>  ( -u ( log `  ( 1  +  ( _i  x.  A ) ) )  -  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )
82 addcl 10018 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
8325, 8, 82sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  +  ( _i  x.  A ) )  e.  CC )
84 bndatandm 24656 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  dom arctan )
85 atandm2 24604 . . . . . . . 8  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
8684, 85sylib 208 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( A  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
8786simp3d 1075 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  +  ( _i  x.  A ) )  =/=  0 )
8883, 87logcld 24317 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC )
89 subcl 10280 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
9025, 8, 89sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  (
_i  x.  A )
)  e.  CC )
9186simp2d 1074 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  (
_i  x.  A )
)  =/=  0 )
9290, 91logcld 24317 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  -  ( _i  x.  A ) ) )  e.  CC )
9388, 92neg2subd 10409 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( -u ( log `  (
1  +  ( _i  x.  A ) ) )  -  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
9481, 93breqtrd 4679 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  ~~>  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
9550, 62subcld 10392 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) )  e.  CC )
9676, 95eqeltrd 2701 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  e.  CC )
973a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  _i  e.  CC )
98 negicn 10282 . . . . . . . . 9  |-  -u _i  e.  CC
9943adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  e.  NN0 )
100 expcl 12878 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  m  e.  NN0 )  ->  ( -u _i ^
m )  e.  CC )
10198, 99, 100sylancr 695 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u _i ^ m )  e.  CC )
102 expcl 12878 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  m  e.  NN0 )  -> 
( _i ^ m
)  e.  CC )
1033, 99, 102sylancr 695 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( _i ^
m )  e.  CC )
104101, 103subcld 10392 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i ^ m )  -  ( _i ^ m ) )  e.  CC )
105 2cnd 11093 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  2  e.  CC )
106 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
107106a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  2  =/=  0
)
10897, 104, 105, 107div23d 10838 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
)  =  ( ( _i  /  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) ) )
109108oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  =  ( ( ( _i 
/  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  x.  (
( A ^ m
)  /  m ) ) )
1105adantr 481 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( _i  / 
2 )  e.  CC )
111 expcl 12878 . . . . . . . 8  |-  ( ( A  e.  CC  /\  m  e.  NN0 )  -> 
( A ^ m
)  e.  CC )
1126, 43, 111syl2an 494 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( A ^
m )  e.  CC )
113112, 47, 49divcld 10801 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( A ^ m )  /  m )  e.  CC )
114110, 104, 113mulassd 10063 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  /  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  x.  (
( A ^ m
)  /  m ) )  =  ( ( _i  /  2 )  x.  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( ( A ^ m )  /  m ) ) ) )
115101, 103, 112subdird 10487 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( A ^
m ) )  =  ( ( ( -u _i ^ m )  x.  ( A ^ m
) )  -  (
( _i ^ m
)  x.  ( A ^ m ) ) ) )
1166adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  A  e.  CC )
117 mulneg1 10466 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
1183, 116, 117sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
119118oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i  x.  A ) ^
m )  =  (
-u ( _i  x.  A ) ^ m
) )
12098a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  -u _i  e.  CC )
121120, 116, 99mulexpd 13023 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i  x.  A ) ^
m )  =  ( ( -u _i ^
m )  x.  ( A ^ m ) ) )
122119, 121eqtr3d 2658 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u (
_i  x.  A ) ^ m )  =  ( ( -u _i ^ m )  x.  ( A ^ m
) ) )
12397, 116, 99mulexpd 13023 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  A ) ^
m )  =  ( ( _i ^ m
)  x.  ( A ^ m ) ) )
124122, 123oveq12d 6668 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u ( _i  x.  A
) ^ m )  -  ( ( _i  x.  A ) ^
m ) )  =  ( ( ( -u _i ^ m )  x.  ( A ^ m
) )  -  (
( _i ^ m
)  x.  ( A ^ m ) ) ) )
125115, 124eqtr4d 2659 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( A ^
m ) )  =  ( ( -u (
_i  x.  A ) ^ m )  -  ( ( _i  x.  A ) ^ m
) ) )
126125oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( ( -u _i ^
m )  -  (
_i ^ m ) )  x.  ( A ^ m ) )  /  m )  =  ( ( ( -u ( _i  x.  A
) ^ m )  -  ( ( _i  x.  A ) ^
m ) )  /  m ) )
127104, 112, 47, 49divassd 10836 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( ( -u _i ^
m )  -  (
_i ^ m ) )  x.  ( A ^ m ) )  /  m )  =  ( ( ( -u _i ^ m )  -  ( _i ^ m ) )  x.  ( ( A ^ m )  /  m ) ) )
12845, 61, 47, 49divsubdird 10840 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u ( _i  x.  A ) ^ m
)  -  ( ( _i  x.  A ) ^ m ) )  /  m )  =  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) )
129126, 127, 1283eqtr3d 2664 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( ( A ^ m )  /  m ) )  =  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) )
130129oveq2d 6666 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i 
/  2 )  x.  ( ( ( -u _i ^ m )  -  ( _i ^ m ) )  x.  ( ( A ^ m )  /  m ) ) )  =  ( ( _i  /  2 )  x.  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) ) ) )
131109, 114, 1303eqtrd 2660 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  =  ( ( _i  / 
2 )  x.  (
( ( -u (
_i  x.  A ) ^ m )  /  m )  -  (
( ( _i  x.  A ) ^ m
)  /  m ) ) ) )
132 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  m  ->  ( -u _i ^ n )  =  ( -u _i ^ m ) )
133 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  m  ->  (
_i ^ n )  =  ( _i ^
m ) )
134132, 133oveq12d 6668 . . . . . . . . 9  |-  ( n  =  m  ->  (
( -u _i ^ n
)  -  ( _i
^ n ) )  =  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )
135134oveq2d 6666 . . . . . . . 8  |-  ( n  =  m  ->  (
_i  x.  ( ( -u _i ^ n )  -  ( _i ^
n ) ) )  =  ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) ) )
136135oveq1d 6665 . . . . . . 7  |-  ( n  =  m  ->  (
( _i  x.  (
( -u _i ^ n
)  -  ( _i
^ n ) ) )  /  2 )  =  ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
) )
137 oveq2 6658 . . . . . . . 8  |-  ( n  =  m  ->  ( A ^ n )  =  ( A ^ m
) )
138137, 37oveq12d 6668 . . . . . . 7  |-  ( n  =  m  ->  (
( A ^ n
)  /  n )  =  ( ( A ^ m )  /  m ) )
139136, 138oveq12d 6668 . . . . . 6  |-  ( n  =  m  ->  (
( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) )  =  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) ) )
140 atantayl.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  ( ( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) ) )
141 ovex 6678 . . . . . 6  |-  ( ( ( _i  x.  (
( -u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  e. 
_V
142139, 140, 141fvmpt 6282 . . . . 5  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) ) )
143142adantl 482 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( F `  m )  =  ( ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
)  x.  ( ( A ^ m )  /  m ) ) )
14476oveq2d 6666 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i 
/  2 )  x.  ( ( n  e.  NN  |->  ( ( (
-u ( _i  x.  A ) ^ n
)  /  n )  -  ( ( ( _i  x.  A ) ^ n )  /  n ) ) ) `
 m ) )  =  ( ( _i 
/  2 )  x.  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) ) )
145131, 143, 1443eqtr4d 2666 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( F `  m )  =  ( ( _i  /  2
)  x.  ( ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) `  m
) ) )
1461, 2, 5, 94, 96, 145isermulc2 14388 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  ,  F )  ~~>  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) )
147 atanval 24611 . . 3  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
14884, 147syl 17 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
(arctan `  A )  =  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )
149146, 148breqtrrd 4681 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  ,  F )  ~~>  (arctan `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   logclog 24301  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-atan 24594
This theorem is referenced by:  atantayl2  24665
  Copyright terms: Public domain W3C validator