MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   Unicode version

Theorem atantan 24650
Description: The arctangent function is an inverse to  tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arctan `  ( tan `  A ) )  =  A )

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 24276 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  A
)  =/=  0 )
2 atandmtan 24647 . . . 4  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  e.  dom arctan )
31, 2syldan 487 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( tan `  A
)  e.  dom arctan )
4 atanval 24611 . . 3  |-  ( ( tan `  A )  e.  dom arctan  ->  (arctan `  ( tan `  A ) )  =  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) ) ) )
53, 4syl 17 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arctan `  ( tan `  A ) )  =  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) ) ) ) )
6 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
7 ax-icn 9995 . . . . . . . 8  |-  _i  e.  CC
8 tancl 14859 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  e.  CC )
91, 8syldan 487 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( tan `  A
)  e.  CC )
10 mulcl 10020 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( tan `  A )  e.  CC )  -> 
( _i  x.  ( tan `  A ) )  e.  CC )
117, 9, 10sylancr 695 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( tan `  A ) )  e.  CC )
12 addcl 10018 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  ( tan `  A ) )  e.  CC )  -> 
( 1  +  ( _i  x.  ( tan `  A ) ) )  e.  CC )
136, 11, 12sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  +  ( _i  x.  ( tan `  A ) ) )  e.  CC )
14 atandm2 24604 . . . . . . . 8  |-  ( ( tan `  A )  e.  dom arctan  <->  ( ( tan `  A )  e.  CC  /\  ( 1  -  (
_i  x.  ( tan `  A ) ) )  =/=  0  /\  (
1  +  ( _i  x.  ( tan `  A
) ) )  =/=  0 ) )
153, 14sylib 208 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( tan `  A )  e.  CC  /\  ( 1  -  (
_i  x.  ( tan `  A ) ) )  =/=  0  /\  (
1  +  ( _i  x.  ( tan `  A
) ) )  =/=  0 ) )
1615simp3d 1075 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  +  ( _i  x.  ( tan `  A ) ) )  =/=  0 )
1713, 16logcld 24317 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  e.  CC )
18 subcl 10280 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  ( tan `  A ) )  e.  CC )  -> 
( 1  -  (
_i  x.  ( tan `  A ) ) )  e.  CC )
196, 11, 18sylancr 695 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  -  ( _i  x.  ( tan `  A ) ) )  e.  CC )
2015simp2d 1074 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  -  ( _i  x.  ( tan `  A ) ) )  =/=  0 )
2119, 20logcld 24317 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) )  e.  CC )
2217, 21negsubdi2d 10408 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) ) ) )
23 efsub 14830 . . . . . . . . 9  |-  ( ( ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  e.  CC  /\  ( log `  ( 1  -  ( _i  x.  ( tan `  A ) ) ) )  e.  CC )  ->  ( exp `  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) ) )  =  ( ( exp `  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) )  / 
( exp `  ( log `  ( 1  -  ( _i  x.  ( tan `  A ) ) ) ) ) ) )
2417, 21, 23syl2anc 693 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) ) )  =  ( ( exp `  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) )  / 
( exp `  ( log `  ( 1  -  ( _i  x.  ( tan `  A ) ) ) ) ) ) )
25 coscl 14857 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2625adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  A
)  e.  CC )
27 sincl 14856 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
2827adantr 481 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( sin `  A
)  e.  CC )
29 mulcl 10020 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
307, 28, 29sylancr 695 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
3126, 30, 26, 1divdird 10839 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  /  ( cos `  A ) )  =  ( ( ( cos `  A )  /  ( cos `  A
) )  +  ( ( _i  x.  ( sin `  A ) )  /  ( cos `  A
) ) ) )
3226, 1dividd 10799 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( cos `  A )  /  ( cos `  A ) )  =  1 )
337a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  _i  e.  CC )
3433, 28, 26, 1divassd 10836 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) )  /  ( cos `  A ) )  =  ( _i  x.  ( ( sin `  A
)  /  ( cos `  A ) ) ) )
35 tanval 14858 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
361, 35syldan 487 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
3736oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( tan `  A ) )  =  ( _i  x.  ( ( sin `  A )  /  ( cos `  A ) ) ) )
3834, 37eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  ( sin `  A
) )  /  ( cos `  A ) )  =  ( _i  x.  ( tan `  A ) ) )
3932, 38oveq12d 6668 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  /  ( cos `  A
) )  +  ( ( _i  x.  ( sin `  A ) )  /  ( cos `  A
) ) )  =  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )
4031, 39eqtrd 2656 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  /  ( cos `  A ) )  =  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )
41 efival 14882 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
4241adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  A )
)  =  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )
4342oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  /  ( cos `  A ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  /  ( cos `  A ) ) )
44 eflog 24323 . . . . . . . . . . 11  |-  ( ( ( 1  +  ( _i  x.  ( tan `  A ) ) )  e.  CC  /\  (
1  +  ( _i  x.  ( tan `  A
) ) )  =/=  0 )  ->  ( exp `  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) ) )  =  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )
4513, 16, 44syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) )  =  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )
4640, 43, 453eqtr4d 2666 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  ( _i  x.  A
) )  /  ( cos `  A ) )  =  ( exp `  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) ) )
4726, 30, 26, 1divsubdird 10840 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  /  ( cos `  A ) )  =  ( ( ( cos `  A )  /  ( cos `  A
) )  -  (
( _i  x.  ( sin `  A ) )  /  ( cos `  A
) ) ) )
4832, 38oveq12d 6668 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  /  ( cos `  A
) )  -  (
( _i  x.  ( sin `  A ) )  /  ( cos `  A
) ) )  =  ( 1  -  (
_i  x.  ( tan `  A ) ) ) )
4947, 48eqtrd 2656 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  /  ( cos `  A ) )  =  ( 1  -  ( _i  x.  ( tan `  A ) ) ) )
50 negcl 10281 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  -u A  e.  CC )
5150adantr 481 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u A  e.  CC )
52 efival 14882 . . . . . . . . . . . . . 14  |-  ( -u A  e.  CC  ->  ( exp `  ( _i  x.  -u A ) )  =  ( ( cos `  -u A )  +  ( _i  x.  ( sin `  -u A ) ) ) )
5351, 52syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  -u A ) )  =  ( ( cos `  -u A
)  +  ( _i  x.  ( sin `  -u A
) ) ) )
54 cosneg 14877 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
5554adantr 481 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  -u A
)  =  ( cos `  A ) )
56 sinneg 14876 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( sin `  -u A )  = 
-u ( sin `  A
) )
5756adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( sin `  -u A
)  =  -u ( sin `  A ) )
5857oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( sin `  -u A
) )  =  ( _i  x.  -u ( sin `  A ) ) )
59 mulneg2 10467 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  -u ( sin `  A ) )  =  -u ( _i  x.  ( sin `  A ) ) )
607, 28, 59sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  -u ( sin `  A
) )  =  -u ( _i  x.  ( sin `  A ) ) )
6158, 60eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( sin `  -u A
) )  =  -u ( _i  x.  ( sin `  A ) ) )
6255, 61oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( cos `  -u A )  +  ( _i  x.  ( sin `  -u A ) ) )  =  ( ( cos `  A )  +  -u ( _i  x.  ( sin `  A ) ) ) )
6353, 62eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  -u A ) )  =  ( ( cos `  A )  +  -u ( _i  x.  ( sin `  A ) ) ) )
64 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  A  e.  CC )
65 mulneg2 10467 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  -u A
)  =  -u (
_i  x.  A )
)
667, 64, 65sylancr 695 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  -u A )  =  -u ( _i  x.  A
) )
6766fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  -u A ) )  =  ( exp `  -u ( _i  x.  A ) ) )
6826, 30negsubd 10398 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( cos `  A )  +  -u ( _i  x.  ( sin `  A ) ) )  =  ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) ) )
6963, 67, 683eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  -u (
_i  x.  A )
)  =  ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) ) )
7069oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  -u ( _i  x.  A ) )  / 
( cos `  A
) )  =  ( ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) )  / 
( cos `  A
) ) )
71 eflog 24323 . . . . . . . . . . 11  |-  ( ( ( 1  -  (
_i  x.  ( tan `  A ) ) )  e.  CC  /\  (
1  -  ( _i  x.  ( tan `  A
) ) )  =/=  0 )  ->  ( exp `  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  =  ( 1  -  ( _i  x.  ( tan `  A ) ) ) )
7219, 20, 71syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  ( log `  ( 1  -  ( _i  x.  ( tan `  A ) ) ) ) )  =  ( 1  -  (
_i  x.  ( tan `  A ) ) ) )
7349, 70, 723eqtr4d 2666 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( exp `  -u ( _i  x.  A ) )  / 
( cos `  A
) )  =  ( exp `  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) )
7446, 73oveq12d 6668 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  /  ( cos `  A
) )  /  (
( exp `  -u (
_i  x.  A )
)  /  ( cos `  A ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) ) )  /  ( exp `  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) ) ) )
75 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
767, 64, 75sylancr 695 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  A )  e.  CC )
77 efcl 14813 . . . . . . . . . . 11  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
7876, 77syl 17 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
_i  x.  A )
)  e.  CC )
7976negcld 10379 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( _i  x.  A )  e.  CC )
80 efcl 14813 . . . . . . . . . . 11  |-  ( -u ( _i  x.  A
)  e.  CC  ->  ( exp `  -u (
_i  x.  A )
)  e.  CC )
8179, 80syl 17 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  -u (
_i  x.  A )
)  e.  CC )
82 efne0 14827 . . . . . . . . . . 11  |-  ( -u ( _i  x.  A
)  e.  CC  ->  ( exp `  -u (
_i  x.  A )
)  =/=  0 )
8379, 82syl 17 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  -u (
_i  x.  A )
)  =/=  0 )
8478, 81, 26, 83, 1divcan7d 10829 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  /  ( cos `  A
) )  /  (
( exp `  -u (
_i  x.  A )
)  /  ( cos `  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  /  ( exp `  -u ( _i  x.  A ) ) ) )
85 efsub 14830 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  -u ( _i  x.  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  -  -u (
_i  x.  A )
) )  =  ( ( exp `  (
_i  x.  A )
)  /  ( exp `  -u ( _i  x.  A ) ) ) )
8676, 79, 85syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
( _i  x.  A
)  -  -u (
_i  x.  A )
) )  =  ( ( exp `  (
_i  x.  A )
)  /  ( exp `  -u ( _i  x.  A ) ) ) )
8776, 76subnegd 10399 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  A )  -  -u ( _i  x.  A
) )  =  ( ( _i  x.  A
)  +  ( _i  x.  A ) ) )
88762timesd 11275 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( _i  x.  A
) )  =  ( ( _i  x.  A
)  +  ( _i  x.  A ) ) )
8987, 88eqtr4d 2659 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  A )  -  -u ( _i  x.  A
) )  =  ( 2  x.  ( _i  x.  A ) ) )
9089fveq2d 6195 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
( _i  x.  A
)  -  -u (
_i  x.  A )
) )  =  ( exp `  ( 2  x.  ( _i  x.  A ) ) ) )
9184, 86, 903eqtr2d 2662 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( exp `  ( _i  x.  A ) )  /  ( cos `  A
) )  /  (
( exp `  -u (
_i  x.  A )
)  /  ( cos `  A ) ) )  =  ( exp `  (
2  x.  ( _i  x.  A ) ) ) )
9224, 74, 913eqtr2d 2662 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( exp `  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) ) )  =  ( exp `  ( 2  x.  ( _i  x.  A ) ) ) )
9392fveq2d 6195 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  ( exp `  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) ) )  =  ( log `  ( exp `  ( 2  x.  ( _i  x.  A
) ) ) ) )
943adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  ( tan `  A )  e. 
dom arctan )
9551adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  -u A  e.  CC )
9664adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  A  e.  CC )
9796renegd 13949 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  -u A )  =  -u ( Re `  A ) )
9896recld 13934 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  A )  e.  RR )
9998renegcld 10457 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  -u (
Re `  A )  e.  RR )
100 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  A )  <  0 )
10198lt0neg1d 10597 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
( Re `  A
)  <  0  <->  0  <  -u ( Re `  A
) ) )
102100, 101mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  0  <  -u ( Re `  A ) )
103 eliooord 12233 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( -u ( pi  / 
2 )  <  (
Re `  A )  /\  ( Re `  A
)  <  ( pi  /  2 ) ) )
104103adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u (
pi  /  2 )  <  ( Re `  A )  /\  (
Re `  A )  <  ( pi  /  2
) ) )
105104simpld 475 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( pi  / 
2 )  <  (
Re `  A )
)
106105adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  -u (
pi  /  2 )  <  ( Re `  A ) )
107 halfpire 24216 . . . . . . . . . . . . . . . . 17  |-  ( pi 
/  2 )  e.  RR
108 ltnegcon1 10529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( -u ( pi  / 
2 )  <  (
Re `  A )  <->  -u ( Re `  A
)  <  ( pi  /  2 ) ) )
109107, 98, 108sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  ( -u ( pi  /  2
)  <  ( Re `  A )  <->  -u ( Re
`  A )  < 
( pi  /  2
) ) )
110106, 109mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  -u (
Re `  A )  <  ( pi  /  2
) )
111 0xr 10086 . . . . . . . . . . . . . . . 16  |-  0  e.  RR*
112107rexri 10097 . . . . . . . . . . . . . . . 16  |-  ( pi 
/  2 )  e. 
RR*
113 elioo2 12216 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  ( -u ( Re `  A
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( -u (
Re `  A )  e.  RR  /\  0  <  -u ( Re `  A
)  /\  -u ( Re
`  A )  < 
( pi  /  2
) ) ) )
114111, 112, 113mp2an 708 . . . . . . . . . . . . . . 15  |-  ( -u ( Re `  A )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( -u (
Re `  A )  e.  RR  /\  0  <  -u ( Re `  A
)  /\  -u ( Re
`  A )  < 
( pi  /  2
) ) )
11599, 102, 110, 114syl3anbrc 1246 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  -u (
Re `  A )  e.  ( 0 (,) (
pi  /  2 ) ) )
11697, 115eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  -u A )  e.  ( 0 (,) ( pi  /  2
) ) )
117 tanregt0 24285 . . . . . . . . . . . . 13  |-  ( (
-u A  e.  CC  /\  ( Re `  -u A
)  e.  ( 0 (,) ( pi  / 
2 ) ) )  ->  0  <  (
Re `  ( tan `  -u A ) ) )
11895, 116, 117syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  0  <  ( Re `  ( tan `  -u A ) ) )
119 tanneg 14878 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  -u A
)  =  -u ( tan `  A ) )
1201, 119syldan 487 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( tan `  -u A
)  =  -u ( tan `  A ) )
121120adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  ( tan `  -u A )  = 
-u ( tan `  A
) )
122121fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  ( tan `  -u A ) )  =  ( Re `  -u ( tan `  A ) ) )
1239adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  ( tan `  A )  e.  CC )
124123renegd 13949 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  -u ( tan `  A ) )  = 
-u ( Re `  ( tan `  A ) ) )
125122, 124eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  ( tan `  -u A ) )  = 
-u ( Re `  ( tan `  A ) ) )
126118, 125breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  0  <  -u ( Re `  ( tan `  A ) ) )
1279recld 13934 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  ( tan `  A ) )  e.  RR )
128127adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  ( tan `  A ) )  e.  RR )
129128lt0neg1d 10597 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
( Re `  ( tan `  A ) )  <  0  <->  0  <  -u ( Re `  ( tan `  A ) ) ) )
130126, 129mpbird 247 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  ( tan `  A ) )  <  0 )
131130lt0ne0d 10593 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
Re `  ( tan `  A ) )  =/=  0 )
132 atanlogsub 24643 . . . . . . . . 9  |-  ( ( ( tan `  A
)  e.  dom arctan  /\  (
Re `  ( tan `  A ) )  =/=  0 )  ->  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log )
13394, 131, 132syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  <  0 )  ->  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log )
134 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
135 ioossre 12235 . . . . . . . . . . . . . 14  |-  ( -u
1 (,) 1 ) 
C_  RR
1367a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  _i  e.  CC )
13711adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( tan `  A ) )  e.  CC )
138 ine0 10465 . . . . . . . . . . . . . . . . 17  |-  _i  =/=  0
139138a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  _i  =/=  0 )
140 ixi 10656 . . . . . . . . . . . . . . . . . . 19  |-  ( _i  x.  _i )  = 
-u 1
141140oveq1i 6660 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  x.  _i )  x.  ( tan `  A
) )  =  (
-u 1  x.  ( tan `  A ) )
1429adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( tan `  A )  e.  CC )
143142mulm1d 10482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( -u 1  x.  ( tan `  A ) )  = 
-u ( tan `  A
) )
144120adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( tan `  -u A )  = 
-u ( tan `  A
) )
145143, 144eqtr4d 2659 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( -u 1  x.  ( tan `  A ) )  =  ( tan `  -u A
) )
146141, 145syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( _i  x.  _i )  x.  ( tan `  A ) )  =  ( tan `  -u A
) )
147136, 136, 142mulassd 10063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( _i  x.  _i )  x.  ( tan `  A ) )  =  ( _i  x.  (
_i  x.  ( tan `  A ) ) ) )
148140oveq1i 6660 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  x.  _i )  x.  A )  =  ( -u 1  x.  A )
14964adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  A  e.  CC )
150149mulm1d 10482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( -u 1  x.  A )  =  -u A )
151148, 150syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( _i  x.  _i )  x.  A )  =  -u A )
152136, 136, 149mulassd 10063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( _i  x.  _i )  x.  A )  =  ( _i  x.  ( _i  x.  A
) ) )
153151, 152eqtr3d 2658 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  -u A  =  ( _i  x.  ( _i  x.  A
) ) )
154153fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( tan `  -u A )  =  ( tan `  (
_i  x.  ( _i  x.  A ) ) ) )
155146, 147, 1543eqtr3d 2664 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( _i  x.  ( tan `  A
) ) )  =  ( tan `  (
_i  x.  ( _i  x.  A ) ) ) )
156136, 137, 139, 155mvllmuld 10857 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( tan `  A ) )  =  ( ( tan `  (
_i  x.  ( _i  x.  A ) ) )  /  _i ) )
15776adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  A )  e.  CC )
158 reim 13849 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
159158adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  =  ( Im `  ( _i  x.  A ) ) )
160159eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( Re
`  A )  =  0  <->  ( Im `  ( _i  x.  A
) )  =  0 ) )
161160biimpa 501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
Im `  ( _i  x.  A ) )  =  0 )
162157, 161reim0bd 13940 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  A )  e.  RR )
163 tanhbnd 14891 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  A )  e.  RR  ->  (
( tan `  (
_i  x.  ( _i  x.  A ) ) )  /  _i )  e.  ( -u 1 (,) 1 ) )
164162, 163syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( tan `  (
_i  x.  ( _i  x.  A ) ) )  /  _i )  e.  ( -u 1 (,) 1 ) )
165156, 164eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( tan `  A ) )  e.  ( -u 1 (,) 1 ) )
166135, 165sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( tan `  A ) )  e.  RR )
167 readdcl 10019 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  ( _i  x.  ( tan `  A ) )  e.  RR )  -> 
( 1  +  ( _i  x.  ( tan `  A ) ) )  e.  RR )
168134, 166, 167sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
1  +  ( _i  x.  ( tan `  A
) ) )  e.  RR )
169 df-neg 10269 . . . . . . . . . . . . . 14  |-  -u 1  =  ( 0  -  1 )
170 eliooord 12233 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  ( tan `  A ) )  e.  ( -u 1 (,) 1 )  ->  ( -u 1  <  ( _i  x.  ( tan `  A
) )  /\  (
_i  x.  ( tan `  A ) )  <  1 ) )
171165, 170syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( -u 1  <  ( _i  x.  ( tan `  A
) )  /\  (
_i  x.  ( tan `  A ) )  <  1 ) )
172171simpld 475 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  -u 1  <  ( _i  x.  ( tan `  A ) ) )
173169, 172syl5eqbrr 4689 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
0  -  1 )  <  ( _i  x.  ( tan `  A ) ) )
174 0red 10041 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  0  e.  RR )
175134a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  1  e.  RR )
176174, 175, 166ltsubadd2d 10625 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( 0  -  1 )  <  ( _i  x.  ( tan `  A
) )  <->  0  <  ( 1  +  ( _i  x.  ( tan `  A
) ) ) ) )
177173, 176mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  0  <  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )
178168, 177elrpd 11869 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
1  +  ( _i  x.  ( tan `  A
) ) )  e.  RR+ )
179178relogcld 24369 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  e.  RR )
180171simprd 479 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
_i  x.  ( tan `  A ) )  <  1 )
181 difrp 11868 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  ( tan `  A ) )  e.  RR  /\  1  e.  RR )  ->  (
( _i  x.  ( tan `  A ) )  <  1  <->  ( 1  -  ( _i  x.  ( tan `  A ) ) )  e.  RR+ ) )
182166, 134, 181sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( _i  x.  ( tan `  A ) )  <  1  <->  ( 1  -  ( _i  x.  ( tan `  A ) ) )  e.  RR+ ) )
183180, 182mpbid 222 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
1  -  ( _i  x.  ( tan `  A
) ) )  e.  RR+ )
184183relogcld 24369 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  ( log `  ( 1  -  ( _i  x.  ( tan `  A ) ) ) )  e.  RR )
185179, 184resubcld 10458 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  RR )
186 relogrn 24308 . . . . . . . . 9  |-  ( ( ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  RR  ->  ( ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log )
187185, 186syl 17 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  ( Re
`  A )  =  0 )  ->  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log )
1883adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  ( tan `  A )  e. 
dom arctan )
18964adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  A  e.  CC )
190189recld 13934 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  (
Re `  A )  e.  RR )
191 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  0  <  ( Re `  A
) )
192104simprd 479 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  <  (
pi  /  2 ) )
193192adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  (
Re `  A )  <  ( pi  /  2
) )
194 elioo2 12216 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( Re `  A
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
Re `  A )  e.  RR  /\  0  < 
( Re `  A
)  /\  ( Re `  A )  <  (
pi  /  2 ) ) ) )
195111, 112, 194mp2an 708 . . . . . . . . . . . 12  |-  ( ( Re `  A )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( (
Re `  A )  e.  RR  /\  0  < 
( Re `  A
)  /\  ( Re `  A )  <  (
pi  /  2 ) ) )
196190, 191, 193, 195syl3anbrc 1246 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  (
Re `  A )  e.  ( 0 (,) (
pi  /  2 ) ) )
197 tanregt0 24285 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( 0 (,) ( pi  /  2
) ) )  -> 
0  <  ( Re `  ( tan `  A
) ) )
198189, 196, 197syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  0  <  ( Re `  ( tan `  A ) ) )
199198gt0ne0d 10592 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  (
Re `  ( tan `  A ) )  =/=  0 )
200188, 199, 132syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( Re `  A
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )  /\  0  < 
( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log )
201 recl 13850 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
202201adantr 481 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Re `  A )  e.  RR )
203 0re 10040 . . . . . . . . 9  |-  0  e.  RR
204 lttri4 10122 . . . . . . . . 9  |-  ( ( ( Re `  A
)  e.  RR  /\  0  e.  RR )  ->  ( ( Re `  A )  <  0  \/  ( Re `  A
)  =  0  \/  0  <  ( Re
`  A ) ) )
205202, 203, 204sylancl 694 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( Re
`  A )  <  0  \/  ( Re
`  A )  =  0  \/  0  < 
( Re `  A
) ) )
206133, 187, 200, 205mpjao3dan 1395 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) )  e.  ran  log )
207 logef 24328 . . . . . . 7  |-  ( ( ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) ) )  e.  ran  log  ->  ( log `  ( exp `  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) )
208206, 207syl 17 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  ( exp `  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) ) )
209 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
210 mulcl 10020 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 2  x.  ( _i  x.  A
) )  e.  CC )
211209, 76, 210sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( _i  x.  A
) )  e.  CC )
212 picn 24211 . . . . . . . . . . . 12  |-  pi  e.  CC
213 2ne0 11113 . . . . . . . . . . . 12  |-  2  =/=  0
214 divneg 10719 . . . . . . . . . . . 12  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
pi  /  2 )  =  ( -u pi  /  2 ) )
215212, 209, 213, 214mp3an 1424 . . . . . . . . . . 11  |-  -u (
pi  /  2 )  =  ( -u pi  /  2 )
216215, 105syl5eqbrr 4689 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u pi  /  2 )  <  (
Re `  A )
)
217 pire 24210 . . . . . . . . . . . . 13  |-  pi  e.  RR
218217renegcli 10342 . . . . . . . . . . . 12  |-  -u pi  e.  RR
219218a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  e.  RR )
220 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
221220a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  2  e.  RR )
222 2pos 11112 . . . . . . . . . . . 12  |-  0  <  2
223222a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  0  <  2
)
224 ltdivmul 10898 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR  /\  ( Re `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( ( -u pi  /  2 )  <  ( Re `  A )  <->  -u pi  <  ( 2  x.  ( Re
`  A ) ) ) )
225219, 202, 221, 223, 224syl112anc 1330 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( -u pi  /  2 )  < 
( Re `  A
)  <->  -u pi  <  (
2  x.  ( Re
`  A ) ) ) )
226216, 225mpbid 222 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  <  (
2  x.  ( Re
`  A ) ) )
227 immul2 13877 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 2  x.  (
_i  x.  A )
) )  =  ( 2  x.  ( Im
`  ( _i  x.  A ) ) ) )
228220, 76, 227sylancr 695 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( 2  x.  (
_i  x.  A )
) )  =  ( 2  x.  ( Im
`  ( _i  x.  A ) ) ) )
229159oveq2d 6666 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( Re `  A
) )  =  ( 2  x.  ( Im
`  ( _i  x.  A ) ) ) )
230228, 229eqtr4d 2659 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( 2  x.  (
_i  x.  A )
) )  =  ( 2  x.  ( Re
`  A ) ) )
231226, 230breqtrrd 4681 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u pi  <  (
Im `  ( 2  x.  ( _i  x.  A
) ) ) )
232 remulcl 10021 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 2  x.  (
Re `  A )
)  e.  RR )
233220, 202, 232sylancr 695 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( Re `  A
) )  e.  RR )
234217a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  pi  e.  RR )
235 ltmuldiv2 10897 . . . . . . . . . . . 12  |-  ( ( ( Re `  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  ( Re `  A ) )  < 
pi 
<->  ( Re `  A
)  <  ( pi  /  2 ) ) )
236202, 234, 221, 223, 235syl112anc 1330 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( 2  x.  ( Re `  A ) )  < 
pi 
<->  ( Re `  A
)  <  ( pi  /  2 ) ) )
237192, 236mpbird 247 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( Re `  A
) )  <  pi )
238233, 234, 237ltled 10185 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( Re `  A
) )  <_  pi )
239230, 238eqbrtrd 4675 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( Im `  ( 2  x.  (
_i  x.  A )
) )  <_  pi )
240 ellogrn 24306 . . . . . . . 8  |-  ( ( 2  x.  ( _i  x.  A ) )  e.  ran  log  <->  ( (
2  x.  ( _i  x.  A ) )  e.  CC  /\  -u pi  <  ( Im `  (
2  x.  ( _i  x.  A ) ) )  /\  ( Im
`  ( 2  x.  ( _i  x.  A
) ) )  <_  pi ) )
241211, 231, 239, 240syl3anbrc 1246 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  ( _i  x.  A
) )  e.  ran  log )
242 logef 24328 . . . . . . 7  |-  ( ( 2  x.  ( _i  x.  A ) )  e.  ran  log  ->  ( log `  ( exp `  ( 2  x.  (
_i  x.  A )
) ) )  =  ( 2  x.  (
_i  x.  A )
) )
243241, 242syl 17 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( log `  ( exp `  ( 2  x.  ( _i  x.  A
) ) ) )  =  ( 2  x.  ( _i  x.  A
) ) )
24493, 208, 2433eqtr3d 2664 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) )  =  ( 2  x.  ( _i  x.  A ) ) )
245244negeqd 10275 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  -u ( ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) ) )  =  -u ( 2  x.  (
_i  x.  A )
) )
24622, 245eqtr3d 2658 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( log `  ( 1  -  (
_i  x.  ( tan `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( tan `  A ) ) ) ) )  =  -u ( 2  x.  (
_i  x.  A )
) )
247246oveq2d 6666 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  ( tan `  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( tan `  A
) ) ) ) ) )  =  ( ( _i  /  2
)  x.  -u (
2  x.  ( _i  x.  A ) ) ) )
248 halfcl 11257 . . . . 5  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
2497, 248mp1i 13 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  / 
2 )  e.  CC )
250209a1i 11 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  2  e.  CC )
251249, 250, 79mulassd 10063 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( _i  /  2 )  x.  2 )  x.  -u ( _i  x.  A
) )  =  ( ( _i  /  2
)  x.  ( 2  x.  -u ( _i  x.  A ) ) ) )
2527, 209, 213divcan1i 10769 . . . . 5  |-  ( ( _i  /  2 )  x.  2 )  =  _i
253252oveq1i 6660 . . . 4  |-  ( ( ( _i  /  2
)  x.  2 )  x.  -u ( _i  x.  A ) )  =  ( _i  x.  -u (
_i  x.  A )
)
25433, 33, 51mulassd 10063 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  _i )  x.  -u A )  =  ( _i  x.  ( _i  x.  -u A ) ) )
255140oveq1i 6660 . . . . . 6  |-  ( ( _i  x.  _i )  x.  -u A )  =  ( -u 1  x.  -u A )
256 mul2neg 10469 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( -u 1  x.  -u A )  =  ( 1  x.  A ) )
2576, 64, 256sylancr 695 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u 1  x.  -u A )  =  ( 1  x.  A
) )
258 mulid2 10038 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
259258adantr 481 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 1  x.  A )  =  A )
260257, 259eqtrd 2656 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( -u 1  x.  -u A )  =  A )
261255, 260syl5eq 2668 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i  x.  _i )  x.  -u A )  =  A )
26266oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  ( _i  x.  -u A
) )  =  ( _i  x.  -u (
_i  x.  A )
) )
263254, 261, 2623eqtr3rd 2665 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( _i  x.  -u ( _i  x.  A
) )  =  A )
264253, 263syl5eq 2668 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( ( _i  /  2 )  x.  2 )  x.  -u ( _i  x.  A
) )  =  A )
265 mulneg2 10467 . . . . 5  |-  ( ( 2  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 2  x.  -u ( _i  x.  A
) )  =  -u ( 2  x.  (
_i  x.  A )
) )
266209, 76, 265sylancr 695 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( 2  x.  -u ( _i  x.  A
) )  =  -u ( 2  x.  (
_i  x.  A )
) )
267266oveq2d 6666 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i 
/  2 )  x.  ( 2  x.  -u (
_i  x.  A )
) )  =  ( ( _i  /  2
)  x.  -u (
2  x.  ( _i  x.  A ) ) ) )
268251, 264, 2673eqtr3rd 2665 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( ( _i 
/  2 )  x.  -u ( 2  x.  (
_i  x.  A )
) )  =  A )
2695, 247, 2683eqtrd 2660 1  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  (arctan `  ( tan `  A ) )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   Recre 13837   Imcim 13838   expce 14792   sincsin 14794   cosccos 14795   tanctan 14796   picpi 14797   logclog 24301  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-atan 24594
This theorem is referenced by:  atantanb  24651  atan1  24655
  Copyright terms: Public domain W3C validator