| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpaschlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for axpasch 25821. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.) |
| Ref | Expression |
|---|---|
| axpaschlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 10039 |
. . . . . . . 8
| |
| 2 | 0re 10040 |
. . . . . . . . . . 11
| |
| 3 | 2, 1 | elicc2i 12239 |
. . . . . . . . . 10
|
| 4 | 3 | simp1bi 1076 |
. . . . . . . . 9
|
| 5 | 4 | ad2antrl 764 |
. . . . . . . 8
|
| 6 | resubcl 10345 |
. . . . . . . 8
| |
| 7 | 1, 5, 6 | sylancr 695 |
. . . . . . 7
|
| 8 | 7 | recnd 10068 |
. . . . . 6
|
| 9 | 8 | mul02d 10234 |
. . . . 5
|
| 10 | 9 | eqcomd 2628 |
. . . 4
|
| 11 | 2, 1 | elicc2i 12239 |
. . . . . . . . . 10
|
| 12 | 11 | simp1bi 1076 |
. . . . . . . . 9
|
| 13 | 12 | ad2antll 765 |
. . . . . . . 8
|
| 14 | resubcl 10345 |
. . . . . . . 8
| |
| 15 | 1, 13, 14 | sylancr 695 |
. . . . . . 7
|
| 16 | 15 | recnd 10068 |
. . . . . 6
|
| 17 | 16 | mulid2d 10058 |
. . . . 5
|
| 18 | oveq2 6658 |
. . . . . . 7
| |
| 19 | 18 | adantr 481 |
. . . . . 6
|
| 20 | 1m0e1 11131 |
. . . . . 6
| |
| 21 | 19, 20 | syl6eq 2672 |
. . . . 5
|
| 22 | 17, 21 | eqtr2d 2657 |
. . . 4
|
| 23 | 5 | recnd 10068 |
. . . . . 6
|
| 24 | 23 | mul02d 10234 |
. . . . 5
|
| 25 | oveq2 6658 |
. . . . . . 7
| |
| 26 | 25 | adantr 481 |
. . . . . 6
|
| 27 | ax-1cn 9994 |
. . . . . . 7
| |
| 28 | 27 | mul01i 10226 |
. . . . . 6
|
| 29 | 26, 28 | syl6eq 2672 |
. . . . 5
|
| 30 | 24, 29 | eqtr4d 2659 |
. . . 4
|
| 31 | 1elunit 12291 |
. . . . 5
| |
| 32 | 0elunit 12290 |
. . . . 5
| |
| 33 | oveq2 6658 |
. . . . . . . . . 10
| |
| 34 | 1m1e0 11089 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | syl6eq 2672 |
. . . . . . . . 9
|
| 36 | 35 | oveq1d 6665 |
. . . . . . . 8
|
| 37 | 36 | eqeq2d 2632 |
. . . . . . 7
|
| 38 | eqeq1 2626 |
. . . . . . 7
| |
| 39 | 35 | oveq1d 6665 |
. . . . . . . 8
|
| 40 | 39 | eqeq1d 2624 |
. . . . . . 7
|
| 41 | 37, 38, 40 | 3anbi123d 1399 |
. . . . . 6
|
| 42 | eqeq1 2626 |
. . . . . . 7
| |
| 43 | oveq2 6658 |
. . . . . . . . . 10
| |
| 44 | 43, 20 | syl6eq 2672 |
. . . . . . . . 9
|
| 45 | 44 | oveq1d 6665 |
. . . . . . . 8
|
| 46 | 45 | eqeq2d 2632 |
. . . . . . 7
|
| 47 | 44 | oveq1d 6665 |
. . . . . . . 8
|
| 48 | 47 | eqeq2d 2632 |
. . . . . . 7
|
| 49 | 42, 46, 48 | 3anbi123d 1399 |
. . . . . 6
|
| 50 | 41, 49 | rspc2ev 3324 |
. . . . 5
|
| 51 | 31, 32, 50 | mp3an12 1414 |
. . . 4
|
| 52 | 10, 22, 30, 51 | syl3anc 1326 |
. . 3
|
| 53 | 52 | ex 450 |
. 2
|
| 54 | 4 | ad2antrl 764 |
. . . . . . 7
|
| 55 | 12 | ad2antll 765 |
. . . . . . . 8
|
| 56 | 55, 54 | remulcld 10070 |
. . . . . . 7
|
| 57 | 54, 56 | resubcld 10458 |
. . . . . 6
|
| 58 | 55, 54 | readdcld 10069 |
. . . . . . 7
|
| 59 | 58, 56 | resubcld 10458 |
. . . . . 6
|
| 60 | 1red 10055 |
. . . . . . . . . . 11
| |
| 61 | 3 | simp2bi 1077 |
. . . . . . . . . . . 12
|
| 62 | 61 | ad2antrl 764 |
. . . . . . . . . . 11
|
| 63 | 11 | simp3bi 1078 |
. . . . . . . . . . . 12
|
| 64 | 63 | ad2antll 765 |
. . . . . . . . . . 11
|
| 65 | 55, 60, 54, 62, 64 | lemul1ad 10963 |
. . . . . . . . . 10
|
| 66 | 54 | recnd 10068 |
. . . . . . . . . . 11
|
| 67 | 66 | mulid2d 10058 |
. . . . . . . . . 10
|
| 68 | 65, 67 | breqtrd 4679 |
. . . . . . . . 9
|
| 69 | 11 | simp2bi 1077 |
. . . . . . . . . . . 12
|
| 70 | 69 | ad2antll 765 |
. . . . . . . . . . 11
|
| 71 | simpl 473 |
. . . . . . . . . . 11
| |
| 72 | 55, 70, 71 | ne0gt0d 10174 |
. . . . . . . . . 10
|
| 73 | 55, 54 | ltaddpos2d 10612 |
. . . . . . . . . 10
|
| 74 | 72, 73 | mpbid 222 |
. . . . . . . . 9
|
| 75 | 56, 54, 58, 68, 74 | lelttrd 10195 |
. . . . . . . 8
|
| 76 | 56, 58 | posdifd 10614 |
. . . . . . . 8
|
| 77 | 75, 76 | mpbid 222 |
. . . . . . 7
|
| 78 | 77 | gt0ne0d 10592 |
. . . . . 6
|
| 79 | 57, 59, 78 | redivcld 10853 |
. . . . 5
|
| 80 | 54, 56 | subge0d 10617 |
. . . . . . 7
|
| 81 | 68, 80 | mpbird 247 |
. . . . . 6
|
| 82 | divge0 10892 |
. . . . . 6
| |
| 83 | 57, 81, 59, 77, 82 | syl22anc 1327 |
. . . . 5
|
| 84 | 54, 58, 74 | ltled 10185 |
. . . . . . . 8
|
| 85 | 54, 58, 56, 84 | lesub1dd 10643 |
. . . . . . 7
|
| 86 | 59 | recnd 10068 |
. . . . . . . 8
|
| 87 | 86 | mulid2d 10058 |
. . . . . . 7
|
| 88 | 85, 87 | breqtrrd 4681 |
. . . . . 6
|
| 89 | ledivmul2 10902 |
. . . . . . 7
| |
| 90 | 57, 60, 59, 77, 89 | syl112anc 1330 |
. . . . . 6
|
| 91 | 88, 90 | mpbird 247 |
. . . . 5
|
| 92 | 2, 1 | elicc2i 12239 |
. . . . 5
|
| 93 | 79, 83, 91, 92 | syl3anbrc 1246 |
. . . 4
|
| 94 | 55, 56 | resubcld 10458 |
. . . . . 6
|
| 95 | 94, 59, 78 | redivcld 10853 |
. . . . 5
|
| 96 | 3 | simp3bi 1078 |
. . . . . . . . . 10
|
| 97 | 96 | ad2antrl 764 |
. . . . . . . . 9
|
| 98 | 54, 60, 55, 70, 97 | lemul2ad 10964 |
. . . . . . . 8
|
| 99 | 55 | recnd 10068 |
. . . . . . . . 9
|
| 100 | 99 | mulid1d 10057 |
. . . . . . . 8
|
| 101 | 98, 100 | breqtrd 4679 |
. . . . . . 7
|
| 102 | 55, 56 | subge0d 10617 |
. . . . . . 7
|
| 103 | 101, 102 | mpbird 247 |
. . . . . 6
|
| 104 | divge0 10892 |
. . . . . 6
| |
| 105 | 94, 103, 59, 77, 104 | syl22anc 1327 |
. . . . 5
|
| 106 | 55, 54 | addge01d 10615 |
. . . . . . . . 9
|
| 107 | 62, 106 | mpbid 222 |
. . . . . . . 8
|
| 108 | 55, 58, 56, 107 | lesub1dd 10643 |
. . . . . . 7
|
| 109 | 108, 87 | breqtrrd 4681 |
. . . . . 6
|
| 110 | ledivmul2 10902 |
. . . . . . 7
| |
| 111 | 94, 60, 59, 77, 110 | syl112anc 1330 |
. . . . . 6
|
| 112 | 109, 111 | mpbird 247 |
. . . . 5
|
| 113 | 2, 1 | elicc2i 12239 |
. . . . 5
|
| 114 | 95, 105, 112, 113 | syl3anbrc 1246 |
. . . 4
|
| 115 | 1, 54, 6 | sylancr 695 |
. . . . . . 7
|
| 116 | 115 | recnd 10068 |
. . . . . 6
|
| 117 | 99, 116, 86, 78 | div23d 10838 |
. . . . 5
|
| 118 | subdi 10463 |
. . . . . . . . 9
| |
| 119 | 27, 118 | mp3an2 1412 |
. . . . . . . 8
|
| 120 | 99, 66, 119 | syl2anc 693 |
. . . . . . 7
|
| 121 | 100 | oveq1d 6665 |
. . . . . . 7
|
| 122 | 120, 121 | eqtrd 2656 |
. . . . . 6
|
| 123 | 122 | oveq1d 6665 |
. . . . 5
|
| 124 | 57 | recnd 10068 |
. . . . . . . 8
|
| 125 | 86, 124, 86, 78 | divsubdird 10840 |
. . . . . . 7
|
| 126 | 58 | recnd 10068 |
. . . . . . . . . 10
|
| 127 | 56 | recnd 10068 |
. . . . . . . . . 10
|
| 128 | 126, 66, 127 | nnncan2d 10427 |
. . . . . . . . 9
|
| 129 | 99, 66 | pncand 10393 |
. . . . . . . . 9
|
| 130 | 128, 129 | eqtrd 2656 |
. . . . . . . 8
|
| 131 | 130 | oveq1d 6665 |
. . . . . . 7
|
| 132 | 86, 78 | dividd 10799 |
. . . . . . . 8
|
| 133 | 132 | oveq1d 6665 |
. . . . . . 7
|
| 134 | 125, 131, 133 | 3eqtr3d 2664 |
. . . . . 6
|
| 135 | 134 | oveq1d 6665 |
. . . . 5
|
| 136 | 117, 123, 135 | 3eqtr3d 2664 |
. . . 4
|
| 137 | 1, 55, 14 | sylancr 695 |
. . . . . . 7
|
| 138 | 137 | recnd 10068 |
. . . . . 6
|
| 139 | 66, 138, 86, 78 | div23d 10838 |
. . . . 5
|
| 140 | subdi 10463 |
. . . . . . . . 9
| |
| 141 | 27, 140 | mp3an2 1412 |
. . . . . . . 8
|
| 142 | 66, 99, 141 | syl2anc 693 |
. . . . . . 7
|
| 143 | 66 | mulid1d 10057 |
. . . . . . . 8
|
| 144 | 66, 99 | mulcomd 10061 |
. . . . . . . 8
|
| 145 | 143, 144 | oveq12d 6668 |
. . . . . . 7
|
| 146 | 142, 145 | eqtrd 2656 |
. . . . . 6
|
| 147 | 146 | oveq1d 6665 |
. . . . 5
|
| 148 | 94 | recnd 10068 |
. . . . . . . 8
|
| 149 | 86, 148, 86, 78 | divsubdird 10840 |
. . . . . . 7
|
| 150 | 126, 99, 127 | nnncan2d 10427 |
. . . . . . . . 9
|
| 151 | 99, 66 | pncan2d 10394 |
. . . . . . . . 9
|
| 152 | 150, 151 | eqtrd 2656 |
. . . . . . . 8
|
| 153 | 152 | oveq1d 6665 |
. . . . . . 7
|
| 154 | 132 | oveq1d 6665 |
. . . . . . 7
|
| 155 | 149, 153, 154 | 3eqtr3d 2664 |
. . . . . 6
|
| 156 | 155 | oveq1d 6665 |
. . . . 5
|
| 157 | 139, 147, 156 | 3eqtr3d 2664 |
. . . 4
|
| 158 | 99, 66 | mulcomd 10061 |
. . . . . 6
|
| 159 | 158 | oveq1d 6665 |
. . . . 5
|
| 160 | 99, 66, 86, 78 | div23d 10838 |
. . . . . 6
|
| 161 | 134 | oveq1d 6665 |
. . . . . 6
|
| 162 | 160, 161 | eqtrd 2656 |
. . . . 5
|
| 163 | 66, 99, 86, 78 | div23d 10838 |
. . . . . 6
|
| 164 | 155 | oveq1d 6665 |
. . . . . 6
|
| 165 | 163, 164 | eqtrd 2656 |
. . . . 5
|
| 166 | 159, 162, 165 | 3eqtr3d 2664 |
. . . 4
|
| 167 | oveq2 6658 |
. . . . . . . 8
| |
| 168 | 167 | oveq1d 6665 |
. . . . . . 7
|
| 169 | 168 | eqeq2d 2632 |
. . . . . 6
|
| 170 | eqeq1 2626 |
. . . . . 6
| |
| 171 | 167 | oveq1d 6665 |
. . . . . . 7
|
| 172 | 171 | eqeq1d 2624 |
. . . . . 6
|
| 173 | 169, 170, 172 | 3anbi123d 1399 |
. . . . 5
|
| 174 | eqeq1 2626 |
. . . . . 6
| |
| 175 | oveq2 6658 |
. . . . . . . 8
| |
| 176 | 175 | oveq1d 6665 |
. . . . . . 7
|
| 177 | 176 | eqeq2d 2632 |
. . . . . 6
|
| 178 | 175 | oveq1d 6665 |
. . . . . . 7
|
| 179 | 178 | eqeq2d 2632 |
. . . . . 6
|
| 180 | 174, 177, 179 | 3anbi123d 1399 |
. . . . 5
|
| 181 | 173, 180 | rspc2ev 3324 |
. . . 4
|
| 182 | 93, 114, 136, 157, 166, 181 | syl113anc 1338 |
. . 3
|
| 183 | 182 | ex 450 |
. 2
|
| 184 | 53, 183 | pm2.61ine 2877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-icc 12182 |
| This theorem is referenced by: axpasch 25821 |
| Copyright terms: Public domain | W3C validator |