Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld2 Structured version   Visualization version   Unicode version

Theorem brfvrcld2 37984
Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld2.r  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
brfvrcld2  |-  ( ph  ->  ( A ( r* `  R ) B  <->  ( ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B )  \/  A R B ) ) )

Proof of Theorem brfvrcld2
StepHypRef Expression
1 brfvrcld2.r . . 3  |-  ( ph  ->  R  e.  _V )
21brfvrcld 37983 . 2  |-  ( ph  ->  ( A ( r* `  R ) B  <->  ( A ( R ^r  0 ) B  \/  A
( R ^r 
1 ) B ) ) )
3 relexp0g 13762 . . . . . 6  |-  ( R  e.  _V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
41, 3syl 17 . . . . 5  |-  ( ph  ->  ( R ^r 
0 )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
54breqd 4664 . . . 4  |-  ( ph  ->  ( A ( R ^r  0 ) B  <->  A (  _I  |`  ( dom  R  u.  ran  R
) ) B ) )
6 relres 5426 . . . . . . . 8  |-  Rel  (  _I  |`  ( dom  R  u.  ran  R ) )
76releldmi 5362 . . . . . . 7  |-  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  ->  A  e.  dom  (  _I  |`  ( dom  R  u.  ran  R ) ) )
86relelrni 5363 . . . . . . 7  |-  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  ->  B  e.  ran  (  _I  |`  ( dom  R  u.  ran  R ) ) )
9 dmresi 5457 . . . . . . . . . 10  |-  dom  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( dom  R  u.  ran  R )
109eleq2i 2693 . . . . . . . . 9  |-  ( A  e.  dom  (  _I  |`  ( dom  R  u.  ran  R ) )  <->  A  e.  ( dom  R  u.  ran  R ) )
1110biimpi 206 . . . . . . . 8  |-  ( A  e.  dom  (  _I  |`  ( dom  R  u.  ran  R ) )  ->  A  e.  ( dom  R  u.  ran  R ) )
12 rnresi 5479 . . . . . . . . . 10  |-  ran  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( dom  R  u.  ran  R )
1312eleq2i 2693 . . . . . . . . 9  |-  ( B  e.  ran  (  _I  |`  ( dom  R  u.  ran  R ) )  <->  B  e.  ( dom  R  u.  ran  R ) )
1413biimpi 206 . . . . . . . 8  |-  ( B  e.  ran  (  _I  |`  ( dom  R  u.  ran  R ) )  ->  B  e.  ( dom  R  u.  ran  R ) )
1511, 14anim12i 590 . . . . . . 7  |-  ( ( A  e.  dom  (  _I  |`  ( dom  R  u.  ran  R ) )  /\  B  e.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  -> 
( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R ) ) )
167, 8, 15syl2anc 693 . . . . . 6  |-  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  -> 
( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R ) ) )
17 resieq 5407 . . . . . 6  |-  ( ( A  e.  ( dom 
R  u.  ran  R
)  /\  B  e.  ( dom  R  u.  ran  R ) )  ->  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  <->  A  =  B ) )
1816, 17biadan2 674 . . . . 5  |-  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  <->  ( ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R ) )  /\  A  =  B ) )
19 df-3an 1039 . . . . 5  |-  ( ( A  e.  ( dom 
R  u.  ran  R
)  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B )  <->  ( ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R ) )  /\  A  =  B ) )
2018, 19bitr4i 267 . . . 4  |-  ( A (  _I  |`  ( dom  R  u.  ran  R
) ) B  <->  ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B ) )
215, 20syl6bb 276 . . 3  |-  ( ph  ->  ( A ( R ^r  0 ) B  <->  ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B ) ) )
221relexp1d 13771 . . . 4  |-  ( ph  ->  ( R ^r 
1 )  =  R )
2322breqd 4664 . . 3  |-  ( ph  ->  ( A ( R ^r  1 ) B  <->  A R B ) )
2421, 23orbi12d 746 . 2  |-  ( ph  ->  ( ( A ( R ^r  0 ) B  \/  A
( R ^r 
1 ) B )  <-> 
( ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B )  \/  A R B ) ) )
252, 24bitrd 268 1  |-  ( ph  ->  ( A ( r* `  R ) B  <->  ( ( A  e.  ( dom  R  u.  ran  R )  /\  B  e.  ( dom  R  u.  ran  R )  /\  A  =  B )  \/  A R B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   ^r crelexp 13760   r*crcl 37964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761  df-rcl 37965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator