MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Visualization version   Unicode version

Theorem mbfimaopnlem 23422
Description: Lemma for mbfimaopn 23423. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1  |-  J  =  ( TopOpen ` fld )
mbfimaopn.2  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
mbfimaopn.3  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
mbfimaopn.4  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
Assertion
Ref Expression
mbfimaopnlem  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Distinct variable groups:    x, A    x, y, B    x, F, y    x, G, y    x, J, y
Allowed substitution hints:    A( y)    K( x, y)

Proof of Theorem mbfimaopnlem
Dummy variables  t 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 eqid 2622 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
3 mbfimaopn.1 . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
41, 2, 3cnrehmeo 22752 . . . . . . 7  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) Homeo J )
5 hmeocn 21563 . . . . . . 7  |-  ( G  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  ->  G  e.  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J ) )
64, 5ax-mp 5 . . . . . 6  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
7 cnima 21069 . . . . . 6  |-  ( ( G  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  A  e.  J
)  ->  ( `' G " A )  e.  ( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) ) )
86, 7mpan 706 . . . . 5  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) )
9 mbfimaopn.3 . . . . . . . . 9  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
109fveq2i 6194 . . . . . . . 8  |-  ( topGen `  B )  =  (
topGen `  ( (,) " ( QQ  X.  QQ ) ) )
1110tgqioo 22603 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  B )
1211, 11oveq12i 6662 . . . . . 6  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( (
topGen `  B )  tX  ( topGen `  B )
)
13 qtopbas 22563 . . . . . . . 8  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
149, 13eqeltri 2697 . . . . . . 7  |-  B  e.  TopBases
15 txbasval 21409 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( ( topGen `
 B )  tX  ( topGen `  B )
)  =  ( B 
tX  B ) )
1614, 14, 15mp2an 708 . . . . . 6  |-  ( (
topGen `  B )  tX  ( topGen `  B )
)  =  ( B 
tX  B )
17 mbfimaopn.4 . . . . . . . 8  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
1817txval 21367 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( B  tX  B )  =  (
topGen `  K ) )
1914, 14, 18mp2an 708 . . . . . 6  |-  ( B 
tX  B )  =  ( topGen `  K )
2012, 16, 193eqtri 2648 . . . . 5  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( topGen `  K )
218, 20syl6eleq 2711 . . . 4  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( topGen `  K
) )
2217txbas 21370 . . . . . 6  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  K  e.  TopBases )
2314, 14, 22mp2an 708 . . . . 5  |-  K  e.  TopBases
24 eltg3 20766 . . . . 5  |-  ( K  e.  TopBases  ->  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) ) )
2523, 24ax-mp 5 . . . 4  |-  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) )
2621, 25sylib 208 . . 3  |-  ( A  e.  J  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
2726adantl 482 . 2  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
281cnref1o 11827 . . . . . . . 8  |-  G :
( RR  X.  RR )
-1-1-onto-> CC
29 f1ofo 6144 . . . . . . . 8  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -onto-> CC )
3028, 29ax-mp 5 . . . . . . 7  |-  G :
( RR  X.  RR ) -onto-> CC
31 elssuni 4467 . . . . . . . . 9  |-  ( A  e.  J  ->  A  C_ 
U. J )
323cnfldtopon 22586 . . . . . . . . . 10  |-  J  e.  (TopOn `  CC )
3332toponunii 20721 . . . . . . . . 9  |-  CC  =  U. J
3431, 33syl6sseqr 3652 . . . . . . . 8  |-  ( A  e.  J  ->  A  C_  CC )
3534ad2antlr 763 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  C_  CC )
36 foimacnv 6154 . . . . . . 7  |-  ( ( G : ( RR 
X.  RR ) -onto-> CC 
/\  A  C_  CC )  ->  ( G "
( `' G " A ) )  =  A )
3730, 35, 36sylancr 695 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  A )
38 simprr 796 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' G " A )  = 
U. t )
3938imaeq2d 5466 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  ( G " U. t ) )
40 imauni 6504 . . . . . . 7  |-  ( G
" U. t )  =  U_ w  e.  t  ( G "
w )
4139, 40syl6eq 2672 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  = 
U_ w  e.  t  ( G " w
) )
4237, 41eqtr3d 2658 . . . . 5  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  =  U_ w  e.  t  ( G " w ) )
4342imaeq2d 5466 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  =  ( `' F " U_ w  e.  t 
( G " w
) ) )
44 imaiun 6503 . . . 4  |-  ( `' F " U_ w  e.  t  ( G " w ) )  = 
U_ w  e.  t  ( `' F "
( G " w
) )
4543, 44syl6eq 2672 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  = 
U_ w  e.  t  ( `' F "
( G " w
) ) )
46 ssdomg 8001 . . . . . . 7  |-  ( K  e.  TopBases  ->  ( t  C_  K  ->  t  ~<_  K ) )
4723, 46ax-mp 5 . . . . . 6  |-  ( t 
C_  K  ->  t  ~<_  K )
48 omelon 8543 . . . . . . . . . . 11  |-  om  e.  On
49 nnenom 12779 . . . . . . . . . . . 12  |-  NN  ~~  om
5049ensymi 8006 . . . . . . . . . . 11  |-  om  ~~  NN
51 isnumi 8772 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
5248, 50, 51mp2an 708 . . . . . . . . . 10  |-  NN  e.  dom  card
53 qnnen 14942 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  ~~  NN
54 xpen 8123 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( QQ  ~~  NN  /\  QQ  ~~  NN )  -> 
( QQ  X.  QQ )  ~~  ( NN  X.  NN ) )
5553, 53, 54mp2an 708 . . . . . . . . . . . . . . . . . . 19  |-  ( QQ 
X.  QQ )  ~~  ( NN  X.  NN )
56 xpnnen 14939 . . . . . . . . . . . . . . . . . . 19  |-  ( NN 
X.  NN )  ~~  NN
5755, 56entri 8010 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  ~~  NN
5857, 49entr2i 8011 . . . . . . . . . . . . . . . . 17  |-  om  ~~  ( QQ  X.  QQ )
59 isnumi 8772 . . . . . . . . . . . . . . . . 17  |-  ( ( om  e.  On  /\  om 
~~  ( QQ  X.  QQ ) )  ->  ( QQ  X.  QQ )  e. 
dom  card )
6048, 58, 59mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( QQ 
X.  QQ )  e. 
dom  card
61 ioof 12271 . . . . . . . . . . . . . . . . . 18  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
62 ffun 6048 . . . . . . . . . . . . . . . . . 18  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  Fun  (,)
64 qssre 11798 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  C_  RR
65 ressxr 10083 . . . . . . . . . . . . . . . . . . . 20  |-  RR  C_  RR*
6664, 65sstri 3612 . . . . . . . . . . . . . . . . . . 19  |-  QQ  C_  RR*
67 xpss12 5225 . . . . . . . . . . . . . . . . . . 19  |-  ( ( QQ  C_  RR*  /\  QQ  C_ 
RR* )  ->  ( QQ  X.  QQ )  C_  ( RR*  X.  RR* )
)
6866, 66, 67mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  C_  ( RR*  X.  RR* )
6961fdmi 6052 . . . . . . . . . . . . . . . . . 18  |-  dom  (,)  =  ( RR*  X.  RR* )
7068, 69sseqtr4i 3638 . . . . . . . . . . . . . . . . 17  |-  ( QQ 
X.  QQ )  C_  dom  (,)
71 fores 6124 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  (,)  /\  ( QQ  X.  QQ )  C_  dom  (,) )  ->  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) ) )
7263, 70, 71mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) )
73 fodomnum 8880 . . . . . . . . . . . . . . . 16  |-  ( ( QQ  X.  QQ )  e.  dom  card  ->  ( ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ ) -onto-> ( (,) " ( QQ  X.  QQ ) )  ->  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ  X.  QQ ) ) )
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ 
X.  QQ )
759, 74eqbrtri 4674 . . . . . . . . . . . . . 14  |-  B  ~<_  ( QQ  X.  QQ )
76 domentr 8015 . . . . . . . . . . . . . 14  |-  ( ( B  ~<_  ( QQ  X.  QQ )  /\  ( QQ  X.  QQ )  ~~  NN )  ->  B  ~<_  NN )
7775, 57, 76mp2an 708 . . . . . . . . . . . . 13  |-  B  ~<_  NN
7814elexi 3213 . . . . . . . . . . . . . 14  |-  B  e. 
_V
7978xpdom1 8059 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( B  X.  B )  ~<_  ( NN 
X.  B ) )
8077, 79ax-mp 5 . . . . . . . . . . . 12  |-  ( B  X.  B )  ~<_  ( NN  X.  B )
81 nnex 11026 . . . . . . . . . . . . . 14  |-  NN  e.  _V
8281xpdom2 8055 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( NN  X.  B )  ~<_  ( NN 
X.  NN ) )
8377, 82ax-mp 5 . . . . . . . . . . . 12  |-  ( NN 
X.  B )  ~<_  ( NN  X.  NN )
84 domtr 8009 . . . . . . . . . . . 12  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  B )  /\  ( NN  X.  B )  ~<_  ( NN  X.  NN ) )  ->  ( B  X.  B )  ~<_  ( NN 
X.  NN ) )
8580, 83, 84mp2an 708 . . . . . . . . . . 11  |-  ( B  X.  B )  ~<_  ( NN  X.  NN )
86 domentr 8015 . . . . . . . . . . 11  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ( B  X.  B )  ~<_  NN )
8785, 56, 86mp2an 708 . . . . . . . . . 10  |-  ( B  X.  B )  ~<_  NN
88 numdom 8861 . . . . . . . . . 10  |-  ( ( NN  e.  dom  card  /\  ( B  X.  B
)  ~<_  NN )  -> 
( B  X.  B
)  e.  dom  card )
8952, 87, 88mp2an 708 . . . . . . . . 9  |-  ( B  X.  B )  e. 
dom  card
90 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
91 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
92 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
9391, 92xpex 6962 . . . . . . . . . . 11  |-  ( x  X.  y )  e. 
_V
9490, 93fnmpt2i 7239 . . . . . . . . . 10  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )
95 dffn4 6121 . . . . . . . . . 10  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B
) -onto-> ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) )
9694, 95mpbi 220 . . . . . . . . 9  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B ) -onto-> ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )
97 fodomnum 8880 . . . . . . . . 9  |-  ( ( B  X.  B )  e.  dom  card  ->  ( ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) : ( B  X.  B )
-onto->
ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) )  ~<_  ( B  X.  B ) ) )
9889, 96, 97mp2 9 . . . . . . . 8  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )
99 domtr 8009 . . . . . . . 8  |-  ( ( ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )  /\  ( B  X.  B )  ~<_  NN )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  NN )
10098, 87, 99mp2an 708 . . . . . . 7  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  NN
10117, 100eqbrtri 4674 . . . . . 6  |-  K  ~<_  NN
102 domtr 8009 . . . . . 6  |-  ( ( t  ~<_  K  /\  K  ~<_  NN )  ->  t  ~<_  NN )
10347, 101, 102sylancl 694 . . . . 5  |-  ( t 
C_  K  ->  t  ~<_  NN )
104103ad2antrl 764 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  t  ~<_  NN )
10517eleq2i 2693 . . . . . . . . 9  |-  ( w  e.  K  <->  w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) )
10690, 93elrnmpt2 6773 . . . . . . . . 9  |-  ( w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y ) )
107105, 106bitri 264 . . . . . . . 8  |-  ( w  e.  K  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
) )
108 elin 3796 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( `' ( Re  o.  F
) " x )  i^i  ( `' ( Im  o.  F )
" y ) )  <-> 
( z  e.  ( `' ( Re  o.  F ) " x
)  /\  z  e.  ( `' ( Im  o.  F ) " y
) ) )
109 mbff 23394 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
110109adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  F : dom  F --> CC )
111 fvco3 6275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Re  o.  F ) `  z )  =  ( Re `  ( F `
 z ) ) )
112110, 111sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Re  o.  F
) `  z )  =  ( Re `  ( F `  z ) ) )
113112eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re  o.  F ) `  z
)  e.  x  <->  ( Re `  ( F `  z
) )  e.  x
) )
114 fvco3 6275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Im  o.  F ) `  z )  =  ( Im `  ( F `
 z ) ) )
115110, 114sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Im  o.  F
) `  z )  =  ( Im `  ( F `  z ) ) )
116115eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Im  o.  F ) `  z
)  e.  y  <->  ( Im `  ( F `  z
) )  e.  y ) )
117113, 116anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y ) ) )
118110ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
119 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Re `  w )  =  ( Re `  ( F `  z ) ) )
120 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Im `  w )  =  ( Im `  ( F `  z ) ) )
121119, 120opeq12d 4410 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( F `  z )  ->  <. (
Re `  w ) ,  ( Im `  w ) >.  =  <. ( Re `  ( F `
 z ) ) ,  ( Im `  ( F `  z ) ) >. )
1221cnrecnv 13905 . . . . . . . . . . . . . . . . . . . . 21  |-  `' G  =  ( w  e.  CC  |->  <. ( Re `  w ) ,  ( Im `  w )
>. )
123 opex 4932 . . . . . . . . . . . . . . . . . . . . 21  |-  <. (
Re `  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  _V
124121, 122, 123fvmpt 6282 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  z )  e.  CC  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
125118, 124syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
126125eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  <. ( Re
`  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  ( x  X.  y ) ) )
127118biantrurd 529 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
128126, 127bitr3d 270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( <. ( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( F `
 z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
129 opelxp 5146 . . . . . . . . . . . . . . . . 17  |-  ( <.
( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( Re
`  ( F `  z ) )  e.  x  /\  ( Im
`  ( F `  z ) )  e.  y ) )
130 f1ocnv 6149 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
131 f1ofn 6138 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  `' G  Fn  CC )
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  `' G  Fn  CC
133 elpreima 6337 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G  Fn  CC  ->  ( ( F `  z
)  e.  ( `' `' G " ( x  X.  y ) )  <-> 
( ( F `  z )  e.  CC  /\  ( `' G `  ( F `  z ) )  e.  ( x  X.  y ) ) ) )
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) )
135 imacnvcnv 5599 . . . . . . . . . . . . . . . . . . 19  |-  ( `' `' G " ( x  X.  y ) )  =  ( G "
( x  X.  y
) )
136135eleq2i 2693 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
137134, 136bitr3i 266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
138128, 129, 1373bitr3g 302 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) )
139117, 138bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( F `  z
)  e.  ( G
" ( x  X.  y ) ) ) )
140139pm5.32da 673 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( z  e. 
dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
141 ref 13852 . . . . . . . . . . . . . . . . . . 19  |-  Re : CC
--> RR
142 fco 6058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Re : CC --> RR  /\  F : dom  F --> CC )  ->  ( Re  o.  F ) : dom  F --> RR )
143141, 109, 142sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Re  o.  F ) : dom  F --> RR )
144 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( Re  o.  F )  Fn  dom  F )
145 elpreima 6337 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Re  o.  F ) " x
)  <->  ( z  e. 
dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Re  o.  F ) "
x )  <->  ( z  e.  dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
147 imf 13853 . . . . . . . . . . . . . . . . . . 19  |-  Im : CC
--> RR
148 fco 6058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Im : CC --> RR  /\  F : dom  F --> CC )  ->  ( Im  o.  F ) : dom  F --> RR )
149147, 109, 148sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Im  o.  F ) : dom  F --> RR )
150 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( Im  o.  F )  Fn  dom  F )
151 elpreima 6337 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Im  o.  F ) " y
)  <->  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
152149, 150, 1513syl 18 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Im  o.  F ) "
y )  <->  ( z  e.  dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
153146, 152anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) ) )
154 anandi 871 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
155153, 154syl6bbr 278 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( z  e. 
dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
156155adantr 481 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  ( z  e.  dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
157 ffn 6045 . . . . . . . . . . . . . . . 16  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
158 elpreima 6337 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  dom  F  -> 
( z  e.  ( `' F " ( G
" ( x  X.  y ) ) )  <-> 
( z  e.  dom  F  /\  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) ) )
159109, 157, 1583syl 18 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
160159adantr 481 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
161140, 156, 1603bitr4d 300 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
162108, 161syl5bb 272 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( ( `' ( Re  o.  F )
" x )  i^i  ( `' ( Im  o.  F ) "
y ) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
163162eqrdv 2620 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  =  ( `' F " ( G
" ( x  X.  y ) ) ) )
164 ismbfcn 23398 . . . . . . . . . . . . . . . . . 18  |-  ( F : dom  F --> CC  ->  ( F  e. MblFn  <->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
)
165109, 164syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( F  e. MblFn  <->  ( ( Re  o.  F
)  e. MblFn  /\  (
Im  o.  F )  e. MblFn ) ) )
166165ibi 256 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
167166simpld 475 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Re  o.  F )  e. MblFn )
168 ismbf 23397 . . . . . . . . . . . . . . . 16  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( ( Re  o.  F
)  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
169143, 168syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
170167, 169mpbid 222 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol )
171170adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F
) " x )  e.  dom  vol )
172 imassrn 5477 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,)
1739, 172eqsstri 3635 . . . . . . . . . . . . . 14  |-  B  C_  ran  (,)
174 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
175173, 174sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  ran  (,) )
176 rsp 2929 . . . . . . . . . . . . 13  |-  ( A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol  ->  ( x  e.  ran  (,) 
->  ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
177171, 175, 176sylc 65 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Re  o.  F
) " x )  e.  dom  vol )
178166simprd 479 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Im  o.  F )  e. MblFn )
179 ismbf 23397 . . . . . . . . . . . . . . . 16  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( ( Im  o.  F
)  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
180149, 179syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Im  o.  F )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol ) )
181178, 180mpbid 222 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol )
182181adantr 481 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F
) " y )  e.  dom  vol )
183 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
184173, 183sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  ran  (,) )
185 rsp 2929 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol  ->  ( y  e.  ran  (,) 
->  ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
186182, 184, 185sylc 65 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Im  o.  F
) " y )  e.  dom  vol )
187 inmbl 23310 . . . . . . . . . . . 12  |-  ( ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" y )  e. 
dom  vol )  ->  (
( `' ( Re  o.  F ) "
x )  i^i  ( `' ( Im  o.  F ) " y
) )  e.  dom  vol )
188177, 186, 187syl2anc 693 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  e.  dom  vol )
189163, 188eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' F " ( G "
( x  X.  y
) ) )  e. 
dom  vol )
190 imaeq2 5462 . . . . . . . . . . . 12  |-  ( w  =  ( x  X.  y )  ->  ( G " w )  =  ( G " (
x  X.  y ) ) )
191190imaeq2d 5466 . . . . . . . . . . 11  |-  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  =  ( `' F " ( G " (
x  X.  y ) ) ) )
192191eleq1d 2686 . . . . . . . . . 10  |-  ( w  =  ( x  X.  y )  ->  (
( `' F "
( G " w
) )  e.  dom  vol  <->  ( `' F " ( G
" ( x  X.  y ) ) )  e.  dom  vol )
)
193189, 192syl5ibrcom 237 . . . . . . . . 9  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  e.  dom  vol )
)
194193rexlimdvva 3038 . . . . . . . 8  |-  ( F  e. MblFn  ->  ( E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
)  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
195107, 194syl5bi 232 . . . . . . 7  |-  ( F  e. MblFn  ->  ( w  e.  K  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
196195ralrimiv 2965 . . . . . 6  |-  ( F  e. MblFn  ->  A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol )
197 ssralv 3666 . . . . . 6  |-  ( t 
C_  K  ->  ( A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol  ->  A. w  e.  t  ( `' F " ( G
" w ) )  e.  dom  vol )
)
198196, 197mpan9 486 . . . . 5  |-  ( ( F  e. MblFn  /\  t  C_  K )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
199198ad2ant2r 783 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
200 iunmbl2 23325 . . . 4  |-  ( ( t  ~<_  NN  /\  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )  ->  U_ w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
201104, 199, 200syl2anc 693 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  U_ w  e.  t  ( `' F " ( G " w
) )  e.  dom  vol )
20245, 201eqeltrd 2701 . 2  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  e. 
dom  vol )
20327, 202exlimddv 1863 1  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941   RR*cxr 10073   NNcn 11020   QQcq 11788   (,)cioo 12175   Recre 13837   Imcim 13838   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   TopBasesctb 20749    Cn ccn 21028    tX ctx 21363   Homeochmeo 21556   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  mbfimaopn  23423
  Copyright terms: Public domain W3C validator