MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem1 Structured version   Visualization version   Unicode version

Theorem dfac12lem1 8965
Description: Lemma for dfac12 8971. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1  |-  ( ph  ->  A  e.  On )
dfac12.3  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
dfac12.4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
dfac12.5  |-  ( ph  ->  C  e.  On )
dfac12.h  |-  H  =  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) )
Assertion
Ref Expression
dfac12lem1  |-  ( ph  ->  ( G `  C
)  =  ( y  e.  ( R1 `  C )  |->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) ) )
Distinct variable groups:    y, A    x, y, C    x, G, y    ph, y    x, F, y    y, H
Allowed substitution hints:    ph( x)    A( x)    H( x)

Proof of Theorem dfac12lem1
StepHypRef Expression
1 dfac12.5 . . 3  |-  ( ph  ->  C  e.  On )
2 dfac12.4 . . . 4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
32tfr2 7494 . . 3  |-  ( C  e.  On  ->  ( G `  C )  =  ( ( x  e.  _V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) `  ( G  |`  C ) ) )
41, 3syl 17 . 2  |-  ( ph  ->  ( G `  C
)  =  ( ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) `  ( G  |`  C ) ) )
52tfr1 7493 . . . . 5  |-  G  Fn  On
6 fnfun 5988 . . . . 5  |-  ( G  Fn  On  ->  Fun  G )
75, 6ax-mp 5 . . . 4  |-  Fun  G
8 resfunexg 6479 . . . 4  |-  ( ( Fun  G  /\  C  e.  On )  ->  ( G  |`  C )  e. 
_V )
97, 1, 8sylancr 695 . . 3  |-  ( ph  ->  ( G  |`  C )  e.  _V )
10 dmeq 5324 . . . . . 6  |-  ( x  =  ( G  |`  C )  ->  dom  x  =  dom  ( G  |`  C ) )
1110fveq2d 6195 . . . . 5  |-  ( x  =  ( G  |`  C )  ->  ( R1 `  dom  x )  =  ( R1 `  dom  ( G  |`  C ) ) )
1210unieqd 4446 . . . . . . 7  |-  ( x  =  ( G  |`  C )  ->  U. dom  x  =  U. dom  ( G  |`  C ) )
1310, 12eqeq12d 2637 . . . . . 6  |-  ( x  =  ( G  |`  C )  ->  ( dom  x  =  U. dom  x 
<->  dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ) )
14 rneq 5351 . . . . . . . . . . . . 13  |-  ( x  =  ( G  |`  C )  ->  ran  x  =  ran  ( G  |`  C ) )
15 df-ima 5127 . . . . . . . . . . . . 13  |-  ( G
" C )  =  ran  ( G  |`  C )
1614, 15syl6eqr 2674 . . . . . . . . . . . 12  |-  ( x  =  ( G  |`  C )  ->  ran  x  =  ( G " C ) )
1716unieqd 4446 . . . . . . . . . . 11  |-  ( x  =  ( G  |`  C )  ->  U. ran  x  =  U. ( G " C ) )
1817rneqd 5353 . . . . . . . . . 10  |-  ( x  =  ( G  |`  C )  ->  ran  U.
ran  x  =  ran  U. ( G " C
) )
1918unieqd 4446 . . . . . . . . 9  |-  ( x  =  ( G  |`  C )  ->  U. ran  U.
ran  x  =  U. ran  U. ( G " C ) )
20 suceq 5790 . . . . . . . . 9  |-  ( U. ran  U. ran  x  = 
U. ran  U. ( G " C )  ->  suc  U. ran  U. ran  x  =  suc  U. ran  U. ( G " C
) )
2119, 20syl 17 . . . . . . . 8  |-  ( x  =  ( G  |`  C )  ->  suc  U.
ran  U. ran  x  =  suc  U. ran  U. ( G " C ) )
2221oveq1d 6665 . . . . . . 7  |-  ( x  =  ( G  |`  C )  ->  ( suc  U. ran  U. ran  x  .o  ( rank `  y
) )  =  ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) ) )
23 fveq1 6190 . . . . . . . 8  |-  ( x  =  ( G  |`  C )  ->  (
x `  suc  ( rank `  y ) )  =  ( ( G  |`  C ) `  suc  ( rank `  y )
) )
2423fveq1d 6193 . . . . . . 7  |-  ( x  =  ( G  |`  C )  ->  (
( x `  suc  ( rank `  y )
) `  y )  =  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) )
2522, 24oveq12d 6668 . . . . . 6  |-  ( x  =  ( G  |`  C )  ->  (
( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) )  =  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) )
26 id 22 . . . . . . . . . . . . 13  |-  ( x  =  ( G  |`  C )  ->  x  =  ( G  |`  C ) )
2726, 12fveq12d 6197 . . . . . . . . . . . 12  |-  ( x  =  ( G  |`  C )  ->  (
x `  U. dom  x
)  =  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )
2827rneqd 5353 . . . . . . . . . . 11  |-  ( x  =  ( G  |`  C )  ->  ran  ( x `  U. dom  x )  =  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )
29 oieq2 8418 . . . . . . . . . . 11  |-  ( ran  ( x `  U. dom  x )  =  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) )  -> OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  = OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) ) )
3028, 29syl 17 . . . . . . . . . 10  |-  ( x  =  ( G  |`  C )  -> OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  = OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) ) )
3130cnveqd 5298 . . . . . . . . 9  |-  ( x  =  ( G  |`  C )  ->  `'OrdIso (  _E  ,  ran  (
x `  U. dom  x
) )  =  `'OrdIso (  _E  ,  ran  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) )
3231, 27coeq12d 5286 . . . . . . . 8  |-  ( x  =  ( G  |`  C )  ->  ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) )  =  ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) ) )
3332imaeq1d 5465 . . . . . . 7  |-  ( x  =  ( G  |`  C )  ->  (
( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y )  =  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) ) " y
) )
3433fveq2d 6195 . . . . . 6  |-  ( x  =  ( G  |`  C )  ->  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) )  =  ( F `  (
( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) )
3513, 25, 34ifbieq12d 4113 . . . . 5  |-  ( x  =  ( G  |`  C )  ->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) )  =  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )
3611, 35mpteq12dv 4733 . . . 4  |-  ( x  =  ( G  |`  C )  ->  (
y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) )  =  ( y  e.  ( R1 `  dom  ( G  |`  C ) )  |->  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) ) )
37 eqid 2622 . . . 4  |-  ( x  e.  _V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) )  =  ( x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) )
38 fvex 6201 . . . . 5  |-  ( R1
`  dom  ( G  |`  C ) )  e. 
_V
3938mptex 6486 . . . 4  |-  ( y  e.  ( R1 `  dom  ( G  |`  C ) )  |->  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )  e. 
_V
4036, 37, 39fvmpt 6282 . . 3  |-  ( ( G  |`  C )  e.  _V  ->  ( (
x  e.  _V  |->  ( y  e.  ( R1
`  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y )
)  +o  ( ( x `  suc  ( rank `  y ) ) `
 y ) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `
 U. dom  x
) )  o.  (
x `  U. dom  x
) ) " y
) ) ) ) ) `  ( G  |`  C ) )  =  ( y  e.  ( R1 `  dom  ( G  |`  C ) ) 
|->  if ( dom  ( G  |`  C )  = 
U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) ) )
419, 40syl 17 . 2  |-  ( ph  ->  ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) `  ( G  |`  C ) )  =  ( y  e.  ( R1 `  dom  ( G  |`  C ) )  |->  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) ) )
42 onss 6990 . . . . . . . 8  |-  ( C  e.  On  ->  C  C_  On )
431, 42syl 17 . . . . . . 7  |-  ( ph  ->  C  C_  On )
44 fnssres 6004 . . . . . . 7  |-  ( ( G  Fn  On  /\  C  C_  On )  -> 
( G  |`  C )  Fn  C )
455, 43, 44sylancr 695 . . . . . 6  |-  ( ph  ->  ( G  |`  C )  Fn  C )
46 fndm 5990 . . . . . 6  |-  ( ( G  |`  C )  Fn  C  ->  dom  ( G  |`  C )  =  C )
4745, 46syl 17 . . . . 5  |-  ( ph  ->  dom  ( G  |`  C )  =  C )
4847fveq2d 6195 . . . 4  |-  ( ph  ->  ( R1 `  dom  ( G  |`  C ) )  =  ( R1
`  C ) )
4948mpteq1d 4738 . . 3  |-  ( ph  ->  ( y  e.  ( R1 `  dom  ( G  |`  C ) ) 
|->  if ( dom  ( G  |`  C )  = 
U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )  =  ( y  e.  ( R1 `  C ) 
|->  if ( dom  ( G  |`  C )  = 
U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) ) )
5047adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  dom  ( G  |`  C )  =  C )
5150unieqd 4446 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  U. dom  ( G  |`  C )  = 
U. C )
5250, 51eqeq12d 2637 . . . . . 6  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C )  <->  C  =  U. C ) )
5352ifbid 4108 . . . . 5  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )
54 rankr1ai 8661 . . . . . . . . . . . 12  |-  ( y  e.  ( R1 `  C )  ->  ( rank `  y )  e.  C )
5554ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( rank `  y )  e.  C )
56 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  C  =  U. C )
5755, 56eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( rank `  y )  e.  U. C )
58 eloni 5733 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  Ord  C )
59 ordsucuniel 7024 . . . . . . . . . . . 12  |-  ( Ord 
C  ->  ( ( rank `  y )  e. 
U. C  <->  suc  ( rank `  y )  e.  C
) )
601, 58, 593syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( ( rank `  y
)  e.  U. C  <->  suc  ( rank `  y
)  e.  C ) )
6160ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( rank `  y
)  e.  U. C  <->  suc  ( rank `  y
)  e.  C ) )
6257, 61mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  suc  ( rank `  y
)  e.  C )
63 fvres 6207 . . . . . . . . 9  |-  ( suc  ( rank `  y
)  e.  C  -> 
( ( G  |`  C ) `  suc  ( rank `  y )
)  =  ( G `
 suc  ( rank `  y ) ) )
6462, 63syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G  |`  C ) `  suc  ( rank `  y )
)  =  ( G `
 suc  ( rank `  y ) ) )
6564fveq1d 6193 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )  =  ( ( G `
 suc  ( rank `  y ) ) `  y ) )
6665oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) )  =  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( G `  suc  ( rank `  y
) ) `  y
) ) )
6766ifeq1da 4116 . . . . 5  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )
6851adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. dom  ( G  |`  C )  =  U. C )
6968fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) )  =  ( ( G  |`  C ) `  U. C ) )
701ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  C  e.  On )
71 uniexg 6955 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  On  ->  U. C  e.  _V )
72 sucidg 5803 . . . . . . . . . . . . . . . . 17  |-  ( U. C  e.  _V  ->  U. C  e.  suc  U. C )
7370, 71, 723syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. C  e.  suc  U. C )
741adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  C  e.  On )
75 orduniorsuc 7030 . . . . . . . . . . . . . . . . . 18  |-  ( Ord 
C  ->  ( C  =  U. C  \/  C  =  suc  U. C ) )
7674, 58, 753syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  ( C  =  U. C  \/  C  =  suc  U. C ) )
7776orcanai 952 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  C  =  suc  U. C )
7873, 77eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. C  e.  C
)
79 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( U. C  e.  C  ->  ( ( G  |`  C ) `
 U. C )  =  ( G `  U. C ) )
8078, 79syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( ( G  |`  C ) `  U. C )  =  ( G `  U. C
) )
8169, 80eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) )  =  ( G `
 U. C ) )
8281rneqd 5353 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) )  =  ran  ( G `  U. C ) )
83 oieq2 8418 . . . . . . . . . . . 12  |-  ( ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) )  =  ran  ( G `  U. C )  -> OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  = OrdIso (  _E  ,  ran  ( G `
 U. C ) ) )
8482, 83syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  -> OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  = OrdIso (  _E  ,  ran  ( G `
 U. C ) ) )
8584cnveqd 5298 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  =  `'OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
8685, 81coeq12d 5286 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  =  ( `'OrdIso (  _E  ,  ran  ( G `  U. C
) )  o.  ( G `  U. C ) ) )
87 dfac12.h . . . . . . . . 9  |-  H  =  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) )
8886, 87syl6eqr 2674 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  =  H )
8988imaeq1d 5465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y )  =  ( H "
y ) )
9089fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) ) " y
) )  =  ( F `  ( H
" y ) ) )
9190ifeq2da 4117 . . . . 5  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  (
( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) )
9253, 67, 913eqtrd 2660 . . . 4  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  if ( dom  ( G  |`  C )  =  U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) )
9392mpteq2dva 4744 . . 3  |-  ( ph  ->  ( y  e.  ( R1 `  C ) 
|->  if ( dom  ( G  |`  C )  = 
U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )  =  ( y  e.  ( R1 `  C ) 
|->  if ( C  = 
U. C ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( G `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( H
" y ) ) ) ) )
9449, 93eqtrd 2656 . 2  |-  ( ph  ->  ( y  e.  ( R1 `  dom  ( G  |`  C ) ) 
|->  if ( dom  ( G  |`  C )  = 
U. dom  ( G  |`  C ) ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( ( G  |`  C ) `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( ( `'OrdIso
(  _E  ,  ran  ( ( G  |`  C ) `  U. dom  ( G  |`  C ) ) )  o.  (
( G  |`  C ) `
 U. dom  ( G  |`  C ) ) ) " y ) ) ) )  =  ( y  e.  ( R1 `  C ) 
|->  if ( C  = 
U. C ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( G `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( H
" y ) ) ) ) )
954, 41, 943eqtrd 2660 1  |-  ( ph  ->  ( G `  C
)  =  ( y  e.  ( R1 `  C )  |->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650  recscrecs 7467    +o coa 7557    .o comu 7558  OrdIsocoi 8414  harchar 8461   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oi 8415  df-r1 8627  df-rank 8628
This theorem is referenced by:  dfac12lem2  8966
  Copyright terms: Public domain W3C validator