MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   Unicode version

Theorem dfac12lem3 8967
Description: Lemma for dfac12 8971. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1  |-  ( ph  ->  A  e.  On )
dfac12.3  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
dfac12.4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
Assertion
Ref Expression
dfac12lem3  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Distinct variable groups:    y, A    x, y, G    ph, y    x, F, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem dfac12lem3
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4  |-  ( G `
 A )  e. 
_V
21rnex 7100 . . 3  |-  ran  ( G `  A )  e.  _V
3 ssid 3624 . . . . 5  |-  A  C_  A
4 dfac12.1 . . . . . 6  |-  ( ph  ->  A  e.  On )
5 sseq1 3626 . . . . . . . . 9  |-  ( m  =  n  ->  (
m  C_  A  <->  n  C_  A
) )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( G `  m )  =  ( G `  n ) )
7 f1eq1 6096 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  n )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
86, 7syl 17 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
9 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( R1 `  m )  =  ( R1 `  n
) )
10 f1eq2 6097 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  n )  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
119, 10syl 17 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
128, 11bitrd 268 . . . . . . . . 9  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
135, 12imbi12d 334 . . . . . . . 8  |-  ( m  =  n  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
1413imbi2d 330 . . . . . . 7  |-  ( m  =  n  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) ) ) )
15 sseq1 3626 . . . . . . . . 9  |-  ( m  =  A  ->  (
m  C_  A  <->  A  C_  A
) )
16 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( G `  m )  =  ( G `  A ) )
17 f1eq1 6096 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  A )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
1816, 17syl 17 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
19 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( R1 `  m )  =  ( R1 `  A
) )
20 f1eq2 6097 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  A )  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2218, 21bitrd 268 . . . . . . . . 9  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2315, 22imbi12d 334 . . . . . . . 8  |-  ( m  =  A  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) ) )
2423imbi2d 330 . . . . . . 7  |-  ( m  =  A  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) ) ) )
25 r19.21v 2960 . . . . . . . 8  |-  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  <->  ( ph  ->  A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
26 eloni 5733 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  Ord  m )
2726ad2antrl 764 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  ->  Ord  m )
28 ordelss 5739 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  m  /\  n  e.  m )  ->  n  C_  m )
2927, 28sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  m
)
30 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  m  C_  A
)
3129, 30sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  A
)
32 pm5.5 351 . . . . . . . . . . . . . . 15  |-  ( n 
C_  A  ->  (
( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) 
<->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  ( (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  <-> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3433ralbidva 2985 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  <->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )
354ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A  e.  On )
36 dfac12.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
3736ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  F : ~P (har `  ( R1 `  A ) )
-1-1-> On )
38 dfac12.4 . . . . . . . . . . . . . . 15  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
39 simplrl 800 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  e.  On )
40 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )  =  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )
41 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  C_  A )
42 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )
43 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
44 f1eq1 6096 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  n )  =  ( G `  z )  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
46 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( R1 `  n )  =  ( R1 `  z
) )
47 f1eq2 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R1 `  n )  =  ( R1 `  z )  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4945, 48bitrd 268 . . . . . . . . . . . . . . . . 17  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
5049cbvralv 3171 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  m  ( G `  n ) : ( R1 `  n ) -1-1-> On  <->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5142, 50sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5235, 37, 38, 39, 40, 41, 51dfac12lem2 8966 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On )
5352ex 450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) )
5434, 53sylbid 230 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )
5554expr 643 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  On )  ->  ( m 
C_  A  ->  ( A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On )  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5655com23 86 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  On )  ->  ( A. n  e.  m  (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  ->  ( m  C_  A  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5756expcom 451 . . . . . . . . 9  |-  ( m  e.  On  ->  ( ph  ->  ( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  (
m  C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5857a2d 29 . . . . . . . 8  |-  ( m  e.  On  ->  (
( ph  ->  A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5925, 58syl5bi 232 . . . . . . 7  |-  ( m  e.  On  ->  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
6014, 24, 59tfis3 7057 . . . . . 6  |-  ( A  e.  On  ->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A )
-1-1-> On ) ) )
614, 60mpcom 38 . . . . 5  |-  ( ph  ->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) )
623, 61mpi 20 . . . 4  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On )
63 f1f 6101 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) --> On )
64 frn 6053 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) --> On  ->  ran  ( G `  A
)  C_  On )
6562, 63, 643syl 18 . . 3  |-  ( ph  ->  ran  ( G `  A )  C_  On )
66 onssnum 8863 . . 3  |-  ( ( ran  ( G `  A )  e.  _V  /\ 
ran  ( G `  A )  C_  On )  ->  ran  ( G `  A )  e.  dom  card )
672, 65, 66sylancr 695 . 2  |-  ( ph  ->  ran  ( G `  A )  e.  dom  card )
68 f1f1orn 6148 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A ) )
6962, 68syl 17 . . 3  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-onto-> ran  ( G `  A )
)
70 fvex 6201 . . . 4  |-  ( R1
`  A )  e. 
_V
7170f1oen 7976 . . 3  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A )  ->  ( R1 `  A )  ~~  ran  ( G `  A
) )
72 ennum 8773 . . 3  |-  ( ( R1 `  A ) 
~~  ran  ( G `  A )  ->  (
( R1 `  A
)  e.  dom  card  <->  ran  ( G `  A )  e.  dom  card )
)
7369, 71, 723syl 18 . 2  |-  ( ph  ->  ( ( R1 `  A )  e.  dom  card  <->  ran  ( G `  A
)  e.  dom  card ) )
7467, 73mpbird 247 1  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Ord word 5722   Oncon0 5723   suc csuc 5725   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650  recscrecs 7467    +o coa 7557    .o comu 7558    ~~ cen 7952  OrdIsocoi 8414  harchar 8461   R1cr1 8625   rankcrnk 8626   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-en 7956  df-dom 7957  df-oi 8415  df-har 8463  df-r1 8627  df-rank 8628  df-card 8765
This theorem is referenced by:  dfac12r  8968
  Copyright terms: Public domain W3C validator