MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag1cl Structured version   Visualization version   Unicode version

Theorem diag1cl 16882
Description: The constant functor of  X is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l  |-  L  =  ( CΔfunc D )
diagval.c  |-  ( ph  ->  C  e.  Cat )
diagval.d  |-  ( ph  ->  D  e.  Cat )
diag11.a  |-  A  =  ( Base `  C
)
diag11.c  |-  ( ph  ->  X  e.  A )
diag11.k  |-  K  =  ( ( 1st `  L
) `  X )
Assertion
Ref Expression
diag1cl  |-  ( ph  ->  K  e.  ( D 
Func  C ) )

Proof of Theorem diag1cl
StepHypRef Expression
1 diag11.k . 2  |-  K  =  ( ( 1st `  L
) `  X )
2 diag11.a . . . 4  |-  A  =  ( Base `  C
)
3 eqid 2622 . . . . 5  |-  ( D FuncCat  C )  =  ( D FuncCat  C )
43fucbas 16620 . . . 4  |-  ( D 
Func  C )  =  (
Base `  ( D FuncCat  C ) )
5 relfunc 16522 . . . . 5  |-  Rel  ( C  Func  ( D FuncCat  C
) )
6 diagval.l . . . . . 6  |-  L  =  ( CΔfunc D )
7 diagval.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
8 diagval.d . . . . . 6  |-  ( ph  ->  D  e.  Cat )
96, 7, 8, 3diagcl 16881 . . . . 5  |-  ( ph  ->  L  e.  ( C 
Func  ( D FuncCat  C
) ) )
10 1st2ndbr 7217 . . . . 5  |-  ( ( Rel  ( C  Func  ( D FuncCat  C ) )  /\  L  e.  ( C  Func  ( D FuncCat  C )
) )  ->  ( 1st `  L ) ( C  Func  ( D FuncCat  C ) ) ( 2nd `  L ) )
115, 9, 10sylancr 695 . . . 4  |-  ( ph  ->  ( 1st `  L
) ( C  Func  ( D FuncCat  C ) ) ( 2nd `  L ) )
122, 4, 11funcf1 16526 . . 3  |-  ( ph  ->  ( 1st `  L
) : A --> ( D 
Func  C ) )
13 diag11.c . . 3  |-  ( ph  ->  X  e.  A )
1412, 13ffvelrnd 6360 . 2  |-  ( ph  ->  ( ( 1st `  L
) `  X )  e.  ( D  Func  C
) )
151, 14syl5eqel 2705 1  |-  ( ph  ->  K  e.  ( D 
Func  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   class class class wbr 4653   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Catccat 16325    Func cfunc 16514   FuncCat cfuc 16602  Δfunccdiag 16852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603  df-fuc 16604  df-xpc 16812  df-1stf 16813  df-curf 16854  df-diag 16856
This theorem is referenced by:  curf2ndf  16887
  Copyright terms: Public domain W3C validator