MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngmul0or Structured version   Visualization version   Unicode version

Theorem drngmul0or 18768
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.)
Hypotheses
Ref Expression
drngmuleq0.b  |-  B  =  ( Base `  R
)
drngmuleq0.o  |-  .0.  =  ( 0g `  R )
drngmuleq0.t  |-  .x.  =  ( .r `  R )
drngmuleq0.r  |-  ( ph  ->  R  e.  DivRing )
drngmuleq0.x  |-  ( ph  ->  X  e.  B )
drngmuleq0.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
drngmul0or  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  )
) )

Proof of Theorem drngmul0or
StepHypRef Expression
1 df-ne 2795 . . . . 5  |-  ( X  =/=  .0.  <->  -.  X  =  .0.  )
2 oveq2 6658 . . . . . . . 8  |-  ( ( X  .x.  Y )  =  .0.  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  ( ( ( invr `  R
) `  X )  .x.  .0.  ) )
32ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  ( ( ( invr `  R
) `  X )  .x.  .0.  ) )
4 drngmuleq0.r . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  DivRing )
54adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  R  e.  DivRing )
6 drngmuleq0.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
76adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  X  e.  B )
8 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  X  =/= 
.0.  )
9 drngmuleq0.b . . . . . . . . . . . 12  |-  B  =  ( Base `  R
)
10 drngmuleq0.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
11 drngmuleq0.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
12 eqid 2622 . . . . . . . . . . . 12  |-  ( 1r
`  R )  =  ( 1r `  R
)
13 eqid 2622 . . . . . . . . . . . 12  |-  ( invr `  R )  =  (
invr `  R )
149, 10, 11, 12, 13drnginvrl 18766 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  (
( ( invr `  R
) `  X )  .x.  X )  =  ( 1r `  R ) )
155, 7, 8, 14syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( invr `  R
) `  X )  .x.  X )  =  ( 1r `  R ) )
1615oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( ( invr `  R
) `  X )  .x.  X )  .x.  Y
)  =  ( ( 1r `  R ) 
.x.  Y ) )
17 drngring 18754 . . . . . . . . . . . 12  |-  ( R  e.  DivRing  ->  R  e.  Ring )
184, 17syl 17 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  Ring )
1918adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  R  e. 
Ring )
209, 10, 13drnginvrcl 18764 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  (
( invr `  R ) `  X )  e.  B
)
215, 7, 8, 20syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( (
invr `  R ) `  X )  e.  B
)
22 drngmuleq0.y . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  B )
2322adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  Y  e.  B )
249, 11ringass 18564 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  X )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( (
invr `  R ) `  X )  .x.  X
)  .x.  Y )  =  ( ( (
invr `  R ) `  X )  .x.  ( X  .x.  Y ) ) )
2519, 21, 7, 23, 24syl13anc 1328 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( ( invr `  R
) `  X )  .x.  X )  .x.  Y
)  =  ( ( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) ) )
269, 11, 12ringlidm 18571 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2718, 22, 26syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1r `  R )  .x.  Y
)  =  Y )
2827adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( 1r `  R ) 
.x.  Y )  =  Y )
2916, 25, 283eqtr3d 2664 . . . . . . . 8  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  Y )
3029adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  Y )
3118adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  R  e.  Ring )
3231adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  R  e.  Ring )
3321adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( invr `  R ) `  X )  e.  B
)
349, 11, 10ringrz 18588 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  X )  e.  B
)  ->  ( (
( invr `  R ) `  X )  .x.  .0.  )  =  .0.  )
3532, 33, 34syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  .0.  )  =  .0.  )
363, 30, 353eqtr3d 2664 . . . . . 6  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  Y  =  .0.  )
3736ex 450 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( X  =/=  .0.  ->  Y  =  .0.  ) )
381, 37syl5bir 233 . . . 4  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( -.  X  =  .0.  ->  Y  =  .0.  ) )
3938orrd 393 . . 3  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( X  =  .0.  \/  Y  =  .0.  ) )
4039ex 450 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0. 
->  ( X  =  .0. 
\/  Y  =  .0.  ) ) )
419, 11, 10ringlz 18587 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
4218, 22, 41syl2anc 693 . . . 4  |-  ( ph  ->  (  .0.  .x.  Y
)  =  .0.  )
43 oveq1 6657 . . . . 5  |-  ( X  =  .0.  ->  ( X  .x.  Y )  =  (  .0.  .x.  Y
) )
4443eqeq1d 2624 . . . 4  |-  ( X  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  (  .0.  .x. 
Y )  =  .0.  ) )
4542, 44syl5ibrcom 237 . . 3  |-  ( ph  ->  ( X  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
469, 11, 10ringrz 18588 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
4718, 6, 46syl2anc 693 . . . 4  |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
48 oveq2 6658 . . . . 5  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
4948eqeq1d 2624 . . . 4  |-  ( Y  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
5047, 49syl5ibrcom 237 . . 3  |-  ( ph  ->  ( Y  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
5145, 50jaod 395 . 2  |-  ( ph  ->  ( ( X  =  .0.  \/  Y  =  .0.  )  ->  ( X  .x.  Y )  =  .0.  ) )
5240, 51impbid 202 1  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749
This theorem is referenced by:  drngmulne0  18769  drngmuleq0  18770
  Copyright terms: Public domain W3C validator