MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Visualization version   Unicode version

Theorem dsmmbas2 20081
Description: Base set of the direct sum module using the fndmin 6324 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p  |-  P  =  ( S X_s R )
dsmmbas2.b  |-  B  =  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
Assertion
Ref Expression
dsmmbas2  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  B  =  ( Base `  ( S  (+)m  R ) ) )
Distinct variable groups:    S, f    R, f    P, f    f, I   
f, V
Allowed substitution hint:    B( f)

Proof of Theorem dsmmbas2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2  |-  B  =  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
2 dsmmbas2.p . . . . . 6  |-  P  =  ( S X_s R )
32fveq2i 6194 . . . . 5  |-  ( Base `  P )  =  (
Base `  ( S X_s R ) )
4 rabeq 3192 . . . . 5  |-  ( (
Base `  P )  =  ( Base `  ( S X_s R ) )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  { f  e.  ( Base `  ( S X_s R ) )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin } )
53, 4ax-mp 5 . . . 4  |-  { f  e.  ( Base `  P
)  |  dom  (
f  \  ( 0g  o.  R ) )  e. 
Fin }  =  {
f  e.  ( Base `  ( S X_s R ) )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }
6 simpll 790 . . . . . . . . . 10  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  R  Fn  I )
7 fvco2 6273 . . . . . . . . . 10  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
86, 7sylan 488 . . . . . . . . 9  |-  ( ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
98neeq2d 2854 . . . . . . . 8  |-  ( ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  /\  x  e.  I )  ->  ( ( f `  x )  =/=  (
( 0g  o.  R
) `  x )  <->  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) ) )
109rabbidva 3188 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  { x  e.  I  |  ( f `  x )  =/=  (
( 0g  o.  R
) `  x ) }  =  { x  e.  I  |  (
f `  x )  =/=  ( 0g `  ( R `  x )
) } )
11 eqid 2622 . . . . . . . . 9  |-  ( S
X_s
R )  =  ( S X_s R )
12 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( S X_s R ) )  =  ( Base `  ( S X_s R ) )
13 noel 3919 . . . . . . . . . . . 12  |-  -.  f  e.  (/)
14 reldmprds 16109 . . . . . . . . . . . . . . . 16  |-  Rel  dom  X_s
1514ovprc1 6684 . . . . . . . . . . . . . . 15  |-  ( -.  S  e.  _V  ->  ( S X_s R )  =  (/) )
1615fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( -.  S  e.  _V  ->  (
Base `  ( S X_s R ) )  =  (
Base `  (/) ) )
17 base0 15912 . . . . . . . . . . . . . 14  |-  (/)  =  (
Base `  (/) )
1816, 17syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( -.  S  e.  _V  ->  (
Base `  ( S X_s R ) )  =  (/) )
1918eleq2d 2687 . . . . . . . . . . . 12  |-  ( -.  S  e.  _V  ->  ( f  e.  ( Base `  ( S X_s R ) )  <->  f  e.  (/) ) )
2013, 19mtbiri 317 . . . . . . . . . . 11  |-  ( -.  S  e.  _V  ->  -.  f  e.  ( Base `  ( S X_s R ) ) )
2120con4i 113 . . . . . . . . . 10  |-  ( f  e.  ( Base `  ( S X_s R ) )  ->  S  e.  _V )
2221adantl 482 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  S  e.  _V )
23 simplr 792 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  I  e.  V )
24 simpr 477 . . . . . . . . 9  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
f  e.  ( Base `  ( S X_s R ) ) )
2511, 12, 22, 23, 6, 24prdsbasfn 16131 . . . . . . . 8  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
f  Fn  I )
26 fn0g 17262 . . . . . . . . . . . 12  |-  0g  Fn  _V
27 dffn2 6047 . . . . . . . . . . . 12  |-  ( 0g  Fn  _V  <->  0g : _V
--> _V )
2826, 27mpbi 220 . . . . . . . . . . 11  |-  0g : _V
--> _V
29 dffn2 6047 . . . . . . . . . . . 12  |-  ( R  Fn  I  <->  R :
I --> _V )
3029biimpi 206 . . . . . . . . . . 11  |-  ( R  Fn  I  ->  R : I --> _V )
31 fco 6058 . . . . . . . . . . 11  |-  ( ( 0g : _V --> _V  /\  R : I --> _V )  ->  ( 0g  o.  R
) : I --> _V )
3228, 30, 31sylancr 695 . . . . . . . . . 10  |-  ( R  Fn  I  ->  ( 0g  o.  R ) : I --> _V )
33 ffn 6045 . . . . . . . . . 10  |-  ( ( 0g  o.  R ) : I --> _V  ->  ( 0g  o.  R )  Fn  I )
3432, 33syl 17 . . . . . . . . 9  |-  ( R  Fn  I  ->  ( 0g  o.  R )  Fn  I )
3534ad2antrr 762 . . . . . . . 8  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
( 0g  o.  R
)  Fn  I )
36 fndmdif 6321 . . . . . . . 8  |-  ( ( f  Fn  I  /\  ( 0g  o.  R
)  Fn  I )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e.  I  |  ( f `  x )  =/=  (
( 0g  o.  R
) `  x ) } )
3725, 35, 36syl2anc 693 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e.  I  |  ( f `
 x )  =/=  ( ( 0g  o.  R ) `  x
) } )
38 fndm 5990 . . . . . . . . 9  |-  ( R  Fn  I  ->  dom  R  =  I )
39 rabeq 3192 . . . . . . . . 9  |-  ( dom 
R  =  I  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  { x  e.  I  |  ( f `
 x )  =/=  ( 0g `  ( R `  x )
) } )
4038, 39syl 17 . . . . . . . 8  |-  ( R  Fn  I  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  {
x  e.  I  |  ( f `  x
)  =/=  ( 0g
`  ( R `  x ) ) } )
4140ad2antrr 762 . . . . . . 7  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  =  { x  e.  I  |  ( f `
 x )  =/=  ( 0g `  ( R `  x )
) } )
4210, 37, 413eqtr4d 2666 . . . . . 6  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  ->  dom  ( f  \  ( 0g  o.  R ) )  =  { x  e. 
dom  R  |  (
f `  x )  =/=  ( 0g `  ( R `  x )
) } )
4342eleq1d 2686 . . . . 5  |-  ( ( ( R  Fn  I  /\  I  e.  V
)  /\  f  e.  ( Base `  ( S X_s R ) ) )  -> 
( dom  ( f  \  ( 0g  o.  R ) )  e. 
Fin 
<->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin ) )
4443rabbidva 3188 . . . 4  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  ( S X_s R ) )  |  dom  ( f  \  ( 0g  o.  R ) )  e.  Fin }  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin } )
455, 44syl5eq 2668 . . 3  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin } )
46 fnex 6481 . . . 4  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  R  e.  _V )
47 eqid 2622 . . . . 5  |-  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }
4847dsmmbase 20079 . . . 4  |-  ( R  e.  _V  ->  { f  e.  ( Base `  ( S X_s R ) )  |  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
4946, 48syl 17 . . 3  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }  =  ( Base `  ( S  (+)m 
R ) ) )
5045, 49eqtrd 2656 . 2  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  { f  e.  (
Base `  P )  |  dom  ( f  \ 
( 0g  o.  R
) )  e.  Fin }  =  ( Base `  ( S  (+)m  R ) ) )
511, 50syl5eq 2668 1  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  B  =  ( Base `  ( S  (+)m  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   dom cdm 5114    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   0gc0g 16100   X_scprds 16106    (+)m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-dsmm 20076
This theorem is referenced by:  dsmmfi  20082  frlmbas  20099
  Copyright terms: Public domain W3C validator