MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Visualization version   Unicode version

Theorem dvdsrtr 18652
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
dvdsrtr  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )

Proof of Theorem dvdsrtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . . . . 6  |-  .||  =  (
||r `  R )
3 eqid 2622 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3dvdsr 18646 . . . . 5  |-  ( Y 
.||  Z  <->  ( Y  e.  B  /\  E. y  e.  B  ( y
( .r `  R
) Y )  =  Z ) )
51, 2, 3dvdsr 18646 . . . . 5  |-  ( Z 
.||  X  <->  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )
64, 5anbi12i 733 . . . 4  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r `  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x ( .r
`  R ) Z )  =  X ) ) )
7 an4 865 . . . 4  |-  ( ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
86, 7bitri 264 . . 3  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
9 reeanv 3107 . . . . 5  |-  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  <-> 
( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) )
10 simplrl 800 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  e.  B )
11 simpll 790 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e.  Ring )
12 simprr 796 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  x  e.  B )
13 simprl 794 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  y  e.  B )
141, 3ringcl 18561 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
1511, 12, 13, 14syl3anc 1326 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
161, 2, 3dvdsrmul 18648 . . . . . . . . 9  |-  ( ( Y  e.  B  /\  ( x ( .r
`  R ) y )  e.  B )  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
1710, 15, 16syl2anc 693 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
181, 3ringass 18564 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  Y  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
1911, 12, 13, 10, 18syl13anc 1328 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2017, 19breqtrd 4679 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( x ( .r `  R
) ( y ( .r `  R ) Y ) ) )
21 oveq2 6658 . . . . . . . . 9  |-  ( ( y ( .r `  R ) Y )  =  Z  ->  (
x ( .r `  R ) ( y ( .r `  R
) Y ) )  =  ( x ( .r `  R ) Z ) )
22 id 22 . . . . . . . . 9  |-  ( ( x ( .r `  R ) Z )  =  X  ->  (
x ( .r `  R ) Z )  =  X )
2321, 22sylan9eq 2676 . . . . . . . 8  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( x ( .r `  R ) ( y ( .r
`  R ) Y ) )  =  X )
2423breq2d 4665 . . . . . . 7  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( Y  .||  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) )  <->  Y  .||  X ) )
2520, 24syl5ibcom 235 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
2625rexlimdvva 3038 . . . . 5  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
279, 26syl5bir 233 . . . 4  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( ( E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X )  ->  Y  .||  X ) )
2827expimpd 629 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Y  e.  B  /\  Z  e.  B
)  /\  ( E. y  e.  B  (
y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  (
x ( .r `  R ) Z )  =  X ) )  ->  Y  .||  X ) )
298, 28syl5bi 232 . 2  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  ->  Y  .||  X ) )
30293impib 1262 1  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   Ringcrg 18547   ||rcdsr 18638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mgp 18490  df-ring 18549  df-dvdsr 18641
This theorem is referenced by:  dvdsunit  18663  unitmulcl  18664  unitnegcl  18681
  Copyright terms: Public domain W3C validator