MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl2 Structured version   Visualization version   Unicode version

Theorem efgcpbl2 18170
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgcpbl2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  B )  .~  ( X ++  Y
) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbl2
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
31, 2efger 18131 . . 3  |-  .~  Er  W
43a1i 11 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  .~  Er  W )
5 simpl 473 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  .~  X )
64, 5ercl 7753 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e.  W )
7 wrd0 13330 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
81efgrcl 18128 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
96, 8syl 17 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
109simprd 479 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  W  = Word  ( I  X.  2o ) )
117, 10syl5eleqr 2708 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  (/) 
e.  W )
12 simpr 477 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  .~  Y )
13 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
14 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
15 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
16 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
171, 2, 13, 14, 15, 16efgcpbl 18169 . . . 4  |-  ( ( A  e.  W  /\  (/) 
e.  W  /\  B  .~  Y )  ->  (
( A ++  B ) ++  (/) )  .~  (
( A ++  Y ) ++  (/) ) )
186, 11, 12, 17syl3anc 1326 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A ++  B
) ++  (/) )  .~  (
( A ++  Y ) ++  (/) ) )
196, 10eleqtrd 2703 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e. Word  ( I  X.  2o ) )
204, 12ercl 7753 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e.  W )
2120, 10eleqtrd 2703 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e. Word  ( I  X.  2o ) )
22 ccatcl 13359 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  B  e. Word  ( I  X.  2o ) )  -> 
( A ++  B )  e. Word  ( I  X.  2o ) )
2319, 21, 22syl2anc 693 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  B )  e. Word  ( I  X.  2o ) )
24 ccatrid 13370 . . . 4  |-  ( ( A ++  B )  e. Word 
( I  X.  2o )  ->  ( ( A ++  B ) ++  (/) )  =  ( A ++  B ) )
2523, 24syl 17 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A ++  B
) ++  (/) )  =  ( A ++  B ) )
264, 12ercl2 7755 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e.  W )
2726, 10eleqtrd 2703 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e. Word  ( I  X.  2o ) )
28 ccatcl 13359 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  Y  e. Word  ( I  X.  2o ) )  -> 
( A ++  Y )  e. Word  ( I  X.  2o ) )
2919, 27, 28syl2anc 693 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  Y )  e. Word  ( I  X.  2o ) )
30 ccatrid 13370 . . . 4  |-  ( ( A ++  Y )  e. Word 
( I  X.  2o )  ->  ( ( A ++  Y ) ++  (/) )  =  ( A ++  Y ) )
3129, 30syl 17 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A ++  Y
) ++  (/) )  =  ( A ++  Y ) )
3218, 25, 313brtr3d 4684 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  B )  .~  ( A ++  Y
) )
331, 2, 13, 14, 15, 16efgcpbl 18169 . . . 4  |-  ( (
(/)  e.  W  /\  Y  e.  W  /\  A  .~  X )  -> 
( ( (/) ++  A ) ++  Y )  .~  (
( (/) ++  X ) ++  Y
) )
3411, 26, 5, 33syl3anc 1326 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) ++  A ) ++  Y )  .~  (
( (/) ++  X ) ++  Y
) )
35 ccatlid 13369 . . . . 5  |-  ( A  e. Word  ( I  X.  2o )  ->  ( (/) ++  A )  =  A )
3619, 35syl 17 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) ++  A )  =  A )
3736oveq1d 6665 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) ++  A ) ++  Y )  =  ( A ++  Y ) )
384, 5ercl2 7755 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e.  W )
3938, 10eleqtrd 2703 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e. Word  ( I  X.  2o ) )
40 ccatlid 13369 . . . . 5  |-  ( X  e. Word  ( I  X.  2o )  ->  ( (/) ++  X )  =  X )
4139, 40syl 17 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) ++  X )  =  X )
4241oveq1d 6665 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) ++  X ) ++  Y )  =  ( X ++  Y ) )
4334, 37, 423brtr3d 4684 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  Y )  .~  ( X ++  Y
) )
444, 32, 43ertrd 7758 1  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A ++  B )  .~  ( X ++  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by:  frgpcpbl  18172
  Copyright terms: Public domain W3C validator