Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph3 Structured version   Visualization version   Unicode version

Theorem eldioph3 37329
Description: Inference version of eldioph3b 37328 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eldioph3  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, P, u

Proof of Theorem eldioph3
Dummy variables  a 
b  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  N  e.  NN0 )
2 simpr 477 . . 3  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  P  e.  (mzPoly `  NN )
)
3 eqidd 2623 . . 3  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) } )
4 fveq1 6190 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p `  b )  =  ( P `  b ) )
54eqeq1d 2624 . . . . . . . . 9  |-  ( p  =  P  ->  (
( p `  b
)  =  0  <->  ( P `  b )  =  0 ) )
65anbi2d 740 . . . . . . . 8  |-  ( p  =  P  ->  (
( a  =  ( b  |`  ( 1 ... N ) )  /\  ( p `  b )  =  0 )  <->  ( a  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) ) )
76rexbidv 3052 . . . . . . 7  |-  ( p  =  P  ->  ( E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
p `  b )  =  0 )  <->  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) ) )
87abbidv 2741 . . . . . 6  |-  ( p  =  P  ->  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( p `  b )  =  0 ) }  =  {
a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) } )
9 eqeq1 2626 . . . . . . . . . 10  |-  ( a  =  t  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( b  |`  (
1 ... N ) ) ) )
109anbi1d 741 . . . . . . . . 9  |-  ( a  =  t  ->  (
( a  =  ( b  |`  ( 1 ... N ) )  /\  ( P `  b )  =  0 )  <->  ( t  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) ) )
1110rexbidv 3052 . . . . . . . 8  |-  ( a  =  t  ->  ( E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  ( P `  b )  =  0 )  <->  E. b  e.  ( NN0  ^m  NN ) ( t  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) ) )
12 reseq1 5390 . . . . . . . . . . 11  |-  ( b  =  u  ->  (
b  |`  ( 1 ... N ) )  =  ( u  |`  (
1 ... N ) ) )
1312eqeq2d 2632 . . . . . . . . . 10  |-  ( b  =  u  ->  (
t  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
14 fveq2 6191 . . . . . . . . . . 11  |-  ( b  =  u  ->  ( P `  b )  =  ( P `  u ) )
1514eqeq1d 2624 . . . . . . . . . 10  |-  ( b  =  u  ->  (
( P `  b
)  =  0  <->  ( P `  u )  =  0 ) )
1613, 15anbi12d 747 . . . . . . . . 9  |-  ( b  =  u  ->  (
( t  =  ( b  |`  ( 1 ... N ) )  /\  ( P `  b )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) ) )
1716cbvrexv 3172 . . . . . . . 8  |-  ( E. b  e.  ( NN0 
^m  NN ) ( t  =  ( b  |`  ( 1 ... N
) )  /\  ( P `  b )  =  0 )  <->  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) )
1811, 17syl6bb 276 . . . . . . 7  |-  ( a  =  t  ->  ( E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  ( P `  b )  =  0 )  <->  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) ) )
1918cbvabv 2747 . . . . . 6  |-  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( P `  b )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }
208, 19syl6eq 2672 . . . . 5  |-  ( p  =  P  ->  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( p `  b )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) } )
2120eqeq2d 2632 . . . 4  |-  ( p  =  P  ->  ( { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N ) )  /\  ( p `  b )  =  0 ) }  <->  { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) } ) )
2221rspcev 3309 . . 3  |-  ( ( P  e.  (mzPoly `  NN )  /\  { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) } )  ->  E. p  e.  (mzPoly `  NN ) { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  (
1 ... N ) )  /\  ( p `  b )  =  0 ) } )
232, 3, 22syl2anc 693 . 2  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  E. p  e.  (mzPoly `  NN ) { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N ) )  /\  ( p `  b )  =  0 ) } )
24 eldioph3b 37328 . 2  |-  ( { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N )  <->  ( N  e.  NN0  /\  E. p  e.  (mzPoly `  NN ) { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { a  |  E. b  e.  ( NN0  ^m  NN ) ( a  =  ( b  |`  ( 1 ... N ) )  /\  ( p `  b )  =  0 ) } ) )
251, 23, 24sylanbrc 698 1  |-  ( ( N  e.  NN0  /\  P  e.  (mzPoly `  NN ) )  ->  { t  |  E. u  e.  ( NN0  ^m  NN ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    |` cres 5116   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  diophrex  37339
  Copyright terms: Public domain W3C validator