MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0fzfz0 Structured version   Visualization version   Unicode version

Theorem elfz0fzfz0 12444
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  ->  M  e.  ( 0 ... N ) )

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 12431 . . . 4  |-  ( M  e.  ( 0 ... L )  <->  ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L ) )
2 elfz2 12333 . . . . . 6  |-  ( N  e.  ( L ... X )  <->  ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  /\  ( L  <_  N  /\  N  <_  X ) ) )
3 nn0re 11301 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  M  e.  RR )
4 nn0re 11301 . . . . . . . . . . . . . . . . . 18  |-  ( L  e.  NN0  ->  L  e.  RR )
5 zre 11381 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  RR )
63, 4, 53anim123i 1247 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  N  e.  ZZ )  ->  ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR ) )
763expa 1265 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR ) )
8 letr 10131 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  L  e.  RR  /\  N  e.  RR )  ->  (
( M  <_  L  /\  L  <_  N )  ->  M  <_  N
) )
97, 8syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( ( M  <_  L  /\  L  <_  N )  ->  M  <_  N ) )
10 simplll 798 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  M  e.  NN0 )
11 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
1211adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  N  e.  ZZ )
13 elnn0z 11390 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
14 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  RR )
15 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ZZ  ->  M  e.  RR )
1615adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
175adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
18 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  M  /\  M  <_  N )  ->  0  <_  N
) )
1914, 16, 17, 18syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_  M  /\  M  <_  N
)  ->  0  <_  N ) )
2019exp4b 632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( 0  <_  M  ->  ( M  <_  N  ->  0  <_  N ) ) ) )
2120com23 86 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ZZ  ->  (
0  <_  M  ->  ( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N ) ) ) )
2221imp 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  ZZ  /\  0  <_  M )  -> 
( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N )
) )
2313, 22sylbi 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N ) ) )
2423adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( M  <_  N  ->  0  <_  N )
) )
2524imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  0  <_  N
) )
2625imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  0  <_  N )
27 elnn0z 11390 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
2812, 26, 27sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  N  e.  NN0 )
29 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  M  <_  N )
3010, 28, 293jca 1242 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e. 
NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  /\  M  <_  N )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) )
3130ex 450 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( M  <_  N  ->  ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
) ) )
329, 31syld 47 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0 )  /\  N  e.  ZZ )  ->  ( ( M  <_  L  /\  L  <_  N )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
3332exp4b 632 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( M  <_  L  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) ) )
3433com23 86 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( M  <_  L  ->  ( N  e.  ZZ  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) ) )
35343impia 1261 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ZZ  ->  ( L  <_  N  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) )
3635com13 88 . . . . . . . . . 10  |-  ( L  <_  N  ->  ( N  e.  ZZ  ->  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) ) )
3736adantr 481 . . . . . . . . 9  |-  ( ( L  <_  N  /\  N  <_  X )  -> 
( N  e.  ZZ  ->  ( ( M  e. 
NN0  /\  L  e.  NN0 
/\  M  <_  L
)  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
3837com12 32 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( L  <_  N  /\  N  <_  X )  ->  ( ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
39383ad2ant3 1084 . . . . . . 7  |-  ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  ->  (
( L  <_  N  /\  N  <_  X )  ->  ( ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) ) ) )
4039imp 445 . . . . . 6  |-  ( ( ( L  e.  ZZ  /\  X  e.  ZZ  /\  N  e.  ZZ )  /\  ( L  <_  N  /\  N  <_  X ) )  ->  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
412, 40sylbi 207 . . . . 5  |-  ( N  e.  ( L ... X )  ->  (
( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
4241com12 32 . . . 4  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ( L ... X )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
431, 42sylbi 207 . . 3  |-  ( M  e.  ( 0 ... L )  ->  ( N  e.  ( L ... X )  ->  ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) ) )
4443imp 445 . 2  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  -> 
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N ) )
45 elfz2nn0 12431 . 2  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
4644, 45sylibr 224 1  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... X ) )  ->  M  e.  ( 0 ... N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    <_ cle 10075   NN0cn0 11292   ZZcz 11377   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  swrdccatin12lem2c  13488  swrdccatin12  13491  pfxccatin12  41425
  Copyright terms: Public domain W3C validator