MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgcdlem Structured version   Visualization version   Unicode version

Theorem hashgcdlem 15493
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
hashgcdlem.b  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
hashgcdlem.f  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
Assertion
Ref Expression
hashgcdlem  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, M    x, z, M    x, A    x, B    x, N, y    z, N
Allowed substitution hints:    A( y, z)    B( y, z)    F( x, y, z)

Proof of Theorem hashgcdlem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
2 oveq1 6657 . . . . 5  |-  ( y  =  x  ->  (
y  gcd  ( M  /  N ) )  =  ( x  gcd  ( M  /  N ) ) )
32eqeq1d 2624 . . . 4  |-  ( y  =  x  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( x  gcd  ( M  /  N
) )  =  1 ) )
4 hashgcdlem.a . . . 4  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
53, 4elrab2 3366 . . 3  |-  ( x  e.  A  <->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N
) )  =  1 ) )
6 elfzonn0 12512 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  NN0 )
76ad2antrl 764 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  NN0 )
8 nnnn0 11299 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
983ad2ant2 1083 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  NN0 )
109adantr 481 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  N  e.  NN0 )
117, 10nn0mulcld 11356 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  NN0 )
12 simpl1 1064 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  NN )
13 elfzolt2 12479 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  <  ( M  /  N ) )
1413ad2antrl 764 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  <  ( M  /  N ) )
15 elfzoelz 12470 . . . . . . . . 9  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  ZZ )
1615ad2antrl 764 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  ZZ )
1716zred 11482 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  RR )
18 nnre 11027 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
19183ad2ant1 1082 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  RR )
2019adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  RR )
21 nnre 11027 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
22 nngt0 11049 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
2321, 22jca 554 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
24233ad2ant2 1083 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  e.  RR  /\  0  <  N ) )
2524adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
26 ltmuldiv 10896 . . . . . . 7  |-  ( ( x  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( x  x.  N )  <  M  <->  x  <  ( M  /  N ) ) )
2717, 20, 25, 26syl3anc 1326 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  < 
M  <->  x  <  ( M  /  N ) ) )
2814, 27mpbird 247 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  <  M
)
29 elfzo0 12508 . . . . 5  |-  ( ( x  x.  N )  e.  ( 0..^ M )  <->  ( ( x  x.  N )  e. 
NN0  /\  M  e.  NN  /\  ( x  x.  N )  <  M
) )
3011, 12, 28, 29syl3anbrc 1246 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  ( 0..^ M ) )
31 nncn 11028 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  CC )
32313ad2ant1 1082 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  CC )
33 nncn 11028 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
34333ad2ant2 1083 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  CC )
35 nnne0 11053 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
36353ad2ant2 1083 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  =/=  0 )
3732, 34, 36divcan1d 10802 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
( M  /  N
)  x.  N )  =  M )
3837adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( M  /  N )  x.  N )  =  M )
3938eqcomd 2628 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  =  ( ( M  /  N
)  x.  N ) )
4039oveq2d 6666 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  ( ( x  x.  N
)  gcd  ( ( M  /  N )  x.  N ) ) )
41 nndivdvds 14989 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4241biimp3a 1432 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  NN )
4342nnzd 11481 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  ZZ )
4443adantr 481 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( M  /  N )  e.  ZZ )
45 mulgcdr 15267 . . . . . 6  |-  ( ( x  e.  ZZ  /\  ( M  /  N
)  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( x  x.  N )  gcd  (
( M  /  N
)  x.  N ) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
4616, 44, 10, 45syl3anc 1326 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd  ( ( M  /  N )  x.  N
) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
47 simprr 796 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  gcd  ( M  /  N
) )  =  1 )
4847oveq1d 6665 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  ( 1  x.  N ) )
4934mulid2d 10058 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
1  x.  N )  =  N )
5049adantr 481 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( 1  x.  N )  =  N )
5148, 50eqtrd 2656 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  N )
5240, 46, 513eqtrd 2660 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  N )
53 oveq1 6657 . . . . . 6  |-  ( z  =  ( x  x.  N )  ->  (
z  gcd  M )  =  ( ( x  x.  N )  gcd 
M ) )
5453eqeq1d 2624 . . . . 5  |-  ( z  =  ( x  x.  N )  ->  (
( z  gcd  M
)  =  N  <->  ( (
x  x.  N )  gcd  M )  =  N ) )
55 hashgcdlem.b . . . . 5  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
5654, 55elrab2 3366 . . . 4  |-  ( ( x  x.  N )  e.  B  <->  ( (
x  x.  N )  e.  ( 0..^ M )  /\  ( ( x  x.  N )  gcd  M )  =  N ) )
5730, 52, 56sylanbrc 698 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  B
)
585, 57sylan2b 492 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  x  e.  A )  ->  ( x  x.  N
)  e.  B )
59 oveq1 6657 . . . . 5  |-  ( z  =  w  ->  (
z  gcd  M )  =  ( w  gcd  M ) )
6059eqeq1d 2624 . . . 4  |-  ( z  =  w  ->  (
( z  gcd  M
)  =  N  <->  ( w  gcd  M )  =  N ) )
6160, 55elrab2 3366 . . 3  |-  ( w  e.  B  <->  ( w  e.  ( 0..^ M )  /\  ( w  gcd  M )  =  N ) )
62 simprr 796 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  =  N )
63 elfzoelz 12470 . . . . . . . . . . 11  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ZZ )
6463ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ZZ )
65 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  NN )
6665nnzd 11481 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  ZZ )
67 gcddvds 15225 . . . . . . . . . 10  |-  ( ( w  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M ) 
||  M ) )
6864, 66, 67syl2anc 693 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M )  ||  M ) )
6968simpld 475 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  ||  w )
7062, 69eqbrtrrd 4677 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  w
)
71 nnz 11399 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
72713ad2ant2 1083 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  ZZ )
7372adantr 481 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  ZZ )
7436adantr 481 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  =/=  0
)
75 dvdsval2 14986 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  w  e.  ZZ )  ->  ( N  ||  w  <->  ( w  /  N )  e.  ZZ ) )
7673, 74, 64, 75syl3anc 1326 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  ||  w 
<->  ( w  /  N
)  e.  ZZ ) )
7770, 76mpbid 222 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ZZ )
78 elfzofz 12485 . . . . . . . . 9  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ( 0 ... M
) )
7978ad2antrl 764 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ( 0 ... M ) )
80 elfznn0 12433 . . . . . . . 8  |-  ( w  e.  ( 0 ... M )  ->  w  e.  NN0 )
81 nn0re 11301 . . . . . . . . 9  |-  ( w  e.  NN0  ->  w  e.  RR )
82 nn0ge0 11318 . . . . . . . . 9  |-  ( w  e.  NN0  ->  0  <_  w )
8381, 82jca 554 . . . . . . . 8  |-  ( w  e.  NN0  ->  ( w  e.  RR  /\  0  <_  w ) )
8479, 80, 833syl 18 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  e.  RR  /\  0  <_  w ) )
8524adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
86 divge0 10892 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <_  w )  /\  ( N  e.  RR  /\  0  <  N ) )  ->  0  <_  ( w  /  N ) )
8784, 85, 86syl2anc 693 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  0  <_  (
w  /  N ) )
88 elnn0z 11390 . . . . . 6  |-  ( ( w  /  N )  e.  NN0  <->  ( ( w  /  N )  e.  ZZ  /\  0  <_ 
( w  /  N
) ) )
8977, 87, 88sylanbrc 698 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  NN0 )
9042adantr 481 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( M  /  N )  e.  NN )
91 elfzolt2 12479 . . . . . . 7  |-  ( w  e.  ( 0..^ M )  ->  w  <  M )
9291ad2antrl 764 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  <  M
)
9364zred 11482 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  RR )
9419adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  RR )
95 ltdiv1 10887 . . . . . . 7  |-  ( ( w  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( w  <  M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9693, 94, 85, 95syl3anc 1326 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  < 
M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9792, 96mpbid 222 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  <  ( M  /  N ) )
98 elfzo0 12508 . . . . 5  |-  ( ( w  /  N )  e.  ( 0..^ ( M  /  N ) )  <->  ( ( w  /  N )  e. 
NN0  /\  ( M  /  N )  e.  NN  /\  ( w  /  N
)  <  ( M  /  N ) ) )
9989, 90, 97, 98syl3anbrc 1246 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ( 0..^ ( M  /  N ) ) )
10062oveq1d 6665 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( N  /  N ) )
101 simpl2 1065 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  NN )
102 simpl3 1066 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  M
)
103 gcddiv 15268 . . . . . 6  |-  ( ( ( w  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  NN )  /\  ( N  ||  w  /\  N  ||  M ) )  ->  ( (
w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10464, 66, 101, 70, 102, 103syl32anc 1334 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10534, 36dividd 10799 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  /  N )  =  1 )
106105adantr 481 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  /  N )  =  1 )
107100, 104, 1063eqtr3d 2664 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  /  N )  gcd  ( M  /  N
) )  =  1 )
108 oveq1 6657 . . . . . 6  |-  ( y  =  ( w  /  N )  ->  (
y  gcd  ( M  /  N ) )  =  ( ( w  /  N )  gcd  ( M  /  N ) ) )
109108eqeq1d 2624 . . . . 5  |-  ( y  =  ( w  /  N )  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( (
w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
110109, 4elrab2 3366 . . . 4  |-  ( ( w  /  N )  e.  A  <->  ( (
w  /  N )  e.  ( 0..^ ( M  /  N ) )  /\  ( ( w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
11199, 107, 110sylanbrc 698 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  A
)
11261, 111sylan2b 492 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  w  e.  B )  ->  ( w  /  N
)  e.  A )
1135simplbi 476 . . . 4  |-  ( x  e.  A  ->  x  e.  ( 0..^ ( M  /  N ) ) )
11461simplbi 476 . . . 4  |-  ( w  e.  B  ->  w  e.  ( 0..^ M ) )
115113, 114anim12i 590 . . 3  |-  ( ( x  e.  A  /\  w  e.  B )  ->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )
11663ad2antll 765 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  ZZ )
117116zcnd 11483 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  CC )
11834adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N  e.  CC )
11936adantr 481 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N  =/=  0
)
120117, 118, 119divcan1d 10802 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( w  /  N )  x.  N )  =  w )
121120eqcomd 2628 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  =  ( ( w  /  N
)  x.  N ) )
122 oveq1 6657 . . . . . 6  |-  ( x  =  ( w  /  N )  ->  (
x  x.  N )  =  ( ( w  /  N )  x.  N ) )
123122eqeq2d 2632 . . . . 5  |-  ( x  =  ( w  /  N )  ->  (
w  =  ( x  x.  N )  <->  w  =  ( ( w  /  N )  x.  N
) ) )
124121, 123syl5ibrcom 237 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  ->  w  =  ( x  x.  N
) ) )
12515ad2antrl 764 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  ZZ )
126125zcnd 11483 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  CC )
127126, 118, 119divcan4d 10807 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( x  x.  N )  /  N )  =  x )
128127eqcomd 2628 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  =  ( ( x  x.  N
)  /  N ) )
129 oveq1 6657 . . . . . 6  |-  ( w  =  ( x  x.  N )  ->  (
w  /  N )  =  ( ( x  x.  N )  /  N ) )
130129eqeq2d 2632 . . . . 5  |-  ( w  =  ( x  x.  N )  ->  (
x  =  ( w  /  N )  <->  x  =  ( ( x  x.  N )  /  N
) ) )
131128, 130syl5ibrcom 237 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( w  =  ( x  x.  N
)  ->  x  =  ( w  /  N
) ) )
132124, 131impbid 202 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  <->  w  =  (
x  x.  N ) ) )
133115, 132sylan2 491 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  A  /\  w  e.  B
) )  ->  (
x  =  ( w  /  N )  <->  w  =  ( x  x.  N
) ) )
1341, 58, 112, 133f1o2d 6887 1  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   class class class wbr 4653    |-> cmpt 4729   -1-1-onto->wf1o 5887  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  hashgcdeq  15494
  Copyright terms: Public domain W3C validator