Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   Unicode version

Theorem hbtlem6 37699
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem6.n  |-  N  =  (RSpan `  P )
hbtlem6.r  |-  ( ph  ->  R  e. LNoeR )
hbtlem6.i  |-  ( ph  ->  I  e.  U )
hbtlem6.x  |-  ( ph  ->  X  e.  NN0 )
Assertion
Ref Expression
hbtlem6  |-  ( ph  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
)
Distinct variable groups:    ph, k    k, I    R, k    S, k   
k, X
Allowed substitution hints:    P( k)    U( k)    N( k)

Proof of Theorem hbtlem6
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3  |-  ( ph  ->  R  e. LNoeR )
2 lnrring 37682 . . . . 5  |-  ( R  e. LNoeR  ->  R  e.  Ring )
31, 2syl 17 . . . 4  |-  ( ph  ->  R  e.  Ring )
4 hbtlem6.i . . . 4  |-  ( ph  ->  I  e.  U )
5 hbtlem6.x . . . 4  |-  ( ph  ->  X  e.  NN0 )
6 hbtlem.p . . . . 5  |-  P  =  (Poly1 `  R )
7 hbtlem.u . . . . 5  |-  U  =  (LIdeal `  P )
8 hbtlem.s . . . . 5  |-  S  =  (ldgIdlSeq `  R )
9 eqid 2622 . . . . 5  |-  (LIdeal `  R )  =  (LIdeal `  R )
106, 7, 8, 9hbtlem2 37694 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  e.  (LIdeal `  R )
)
113, 4, 5, 10syl3anc 1326 . . 3  |-  ( ph  ->  ( ( S `  I ) `  X
)  e.  (LIdeal `  R ) )
12 eqid 2622 . . . 4  |-  (RSpan `  R )  =  (RSpan `  R )
139, 12lnr2i 37686 . . 3  |-  ( ( R  e. LNoeR  /\  (
( S `  I
) `  X )  e.  (LIdeal `  R )
)  ->  E. a  e.  ( ~P ( ( S `  I ) `
 X )  i^i 
Fin ) ( ( S `  I ) `
 X )  =  ( (RSpan `  R
) `  a )
)
141, 11, 13syl2anc 693 . 2  |-  ( ph  ->  E. a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) ( ( S `
 I ) `  X )  =  ( (RSpan `  R ) `  a ) )
15 elfpw 8268 . . . . 5  |-  ( a  e.  ( ~P (
( S `  I
) `  X )  i^i  Fin )  <->  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )
16 fvex 6201 . . . . . . . . 9  |-  ( (coe1 `  b ) `  X
)  e.  _V
17 eqid 2622 . . . . . . . . 9  |-  ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  =  ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
1816, 17fnmpti 6022 . . . . . . . 8  |-  ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  Fn 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }
1918a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  Fn  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )
20 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  C_  ( ( S `  I ) `  X
) )
21 eqid 2622 . . . . . . . . . . . 12  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
226, 7, 8, 21hbtlem1 37693 . . . . . . . . . . 11  |-  ( ( R  e. LNoeR  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  =  { d  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) } )
231, 4, 5, 22syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( ( S `  I ) `  X
)  =  { d  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  d  =  ( (coe1 `  b ) `  X
) ) } )
2417rnmpt 5371 . . . . . . . . . . 11  |-  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { d  |  E. b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X ) }
25 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( c  =  b  ->  (
( deg1  `
 R ) `  c )  =  ( ( deg1  `  R ) `  b ) )
2625breq1d 4663 . . . . . . . . . . . . 13  |-  ( c  =  b  ->  (
( ( deg1  `  R ) `  c )  <_  X  <->  ( ( deg1  `  R ) `  b )  <_  X
) )
2726rexrab 3370 . . . . . . . . . . . 12  |-  ( E. b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) )
2827abbii 2739 . . . . . . . . . . 11  |-  { d  |  E. b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X } d  =  ( (coe1 `  b ) `  X ) }  =  { d  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) }
2924, 28eqtri 2644 . . . . . . . . . 10  |-  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { d  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  d  =  ( (coe1 `  b ) `  X
) ) }
3023, 29syl6eqr 2674 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  I ) `  X
)  =  ran  (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) )
3130adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
( S `  I
) `  X )  =  ran  ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
3220, 31sseqtrd 3641 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  C_ 
ran  ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
33 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  a  e.  Fin )
34 fipreima 8272 . . . . . . 7  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  Fn  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  /\  a  C_  ran  ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  /\  a  e.  Fin )  ->  E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )
3519, 32, 33, 34syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )
36 elfpw 8268 . . . . . . . . . 10  |-  ( k  e.  ( ~P {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin )  <->  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )
37 ssrab2 3687 . . . . . . . . . . . . . . . . 17  |-  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  C_  I
38 sstr2 3610 . . . . . . . . . . . . . . . . 17  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  ( { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  C_  I  ->  k  C_  I ) )
3937, 38mpi 20 . . . . . . . . . . . . . . . 16  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  k  C_  I )
4039adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  C_  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )  ->  k  C_  I )
41 selpw 4165 . . . . . . . . . . . . . . 15  |-  ( k  e.  ~P I  <->  k  C_  I )
4240, 41sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  C_  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X } )  ->  k  e.  ~P I )
4342adantrr 753 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  ~P I
)
44 simprr 796 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  Fin )
4543, 44elind 3798 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  e.  ( ~P I  i^i  Fin )
)
463adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  R  e.  Ring )
476ply1ring 19618 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Ring  ->  P  e. 
Ring )
483, 47syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  Ring )
4948adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  P  e.  Ring )
50 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  { c  e.  I  |  (
( deg1  `
 R ) `  c )  <_  X } )
5150, 37syl6ss 3615 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  I )
52 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  P )  =  (
Base `  P )
5352, 7lidlss 19210 . . . . . . . . . . . . . . . . . 18  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
544, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  C_  ( Base `  P ) )
5554adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  I  C_  ( Base `  P
) )
5651, 55sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  ( Base `  P ) )
57 hbtlem6.n . . . . . . . . . . . . . . . 16  |-  N  =  (RSpan `  P )
5857, 52, 7rspcl 19222 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Ring  /\  k  C_  ( Base `  P
) )  ->  ( N `  k )  e.  U )
5949, 56, 58syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( N `  k
)  e.  U )
605adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  X  e.  NN0 )
616, 7, 8, 9hbtlem2 37694 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  ( N `  k )  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  ( N `  k )
) `  X )  e.  (LIdeal `  R )
)
6246, 59, 60, 61syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  e.  (LIdeal `  R
) )
63 df-ima 5127 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  ran  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )
6457, 52rspssid 19223 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Ring  /\  k  C_  ( Base `  P
) )  ->  k  C_  ( N `  k
) )
6549, 56, 64syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  ( N `  k ) )
66 ssrab 3680 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  <->  ( k  C_  I  /\  A. c  e.  k  ( ( deg1  `  R ) `  c )  <_  X
) )
6766simprbi 480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  A. c  e.  k  ( ( deg1  `  R ) `  c )  <_  X
)
6867ad2antrl 764 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  A. c  e.  k 
( ( deg1  `  R ) `  c )  <_  X
)
69 ssrab 3680 . . . . . . . . . . . . . . . . . . . 20  |-  ( k 
C_  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  <->  ( k  C_  ( N `  k )  /\  A. c  e.  k  (
( deg1  `
 R ) `  c )  <_  X
) )
7065, 68, 69sylanbrc 698 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
k  C_  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }
)
7170resmptd 5452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
72 resmpt 5449 . . . . . . . . . . . . . . . . . . 19  |-  ( k 
C_  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  ->  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
7372ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( b  e.  k  |->  ( (coe1 `  b ) `  X
) ) )
7471, 73eqtr4d 2659 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  =  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k ) )
75 resss 5422 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
7674, 75syl6eqssr 3656 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  C_  ( b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) )
77 rnss 5354 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  ->  ran  ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  |`  k )  C_  ran  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) )
7876, 77syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  ->  ran  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) )  |`  k
)  C_  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
7963, 78syl5eqss 3649 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
806, 7, 8, 21hbtlem1 37693 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  ( N `  k )  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  ( N `  k )
) `  X )  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) } )
8146, 59, 60, 80syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R
) `  b )  <_  X  /\  e  =  ( (coe1 `  b ) `  X ) ) } )
82 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) )  =  ( b  e.  {
c  e.  ( N `
 k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)
8382rnmpt 5371 . . . . . . . . . . . . . . . 16  |-  ran  (
b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { e  |  E. b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X ) }
8426rexrab 3370 . . . . . . . . . . . . . . . . 17  |-  ( E. b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X )  <->  E. b  e.  ( N `  k
) ( ( ( deg1  `  R ) `  b
)  <_  X  /\  e  =  ( (coe1 `  b ) `  X
) ) )
8584abbii 2739 . . . . . . . . . . . . . . . 16  |-  { e  |  E. b  e. 
{ c  e.  ( N `  k )  |  ( ( deg1  `  R
) `  c )  <_  X } e  =  ( (coe1 `  b ) `  X ) }  =  { e  |  E. b  e.  ( N `  k ) ( ( ( deg1  `  R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) }
8683, 85eqtri 2644 . . . . . . . . . . . . . . 15  |-  ran  (
b  e.  { c  e.  ( N `  k )  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
)  =  { e  |  E. b  e.  ( N `  k
) ( ( ( deg1  `  R ) `  b
)  <_  X  /\  e  =  ( (coe1 `  b ) `  X
) ) }
8781, 86syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( S `  ( N `  k ) ) `  X )  =  ran  ( b  e.  { c  e.  ( N `  k
)  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) )
8879, 87sseqtr4d 3642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
8912, 9rspssp 19226 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
( S `  ( N `  k )
) `  X )  e.  (LIdeal `  R )  /\  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  C_  ( ( S `  ( N `  k ) ) `  X ) )  -> 
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )
9046, 62, 88, 89syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )
9145, 90jca 554 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
92 fveq2 6191 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
(RSpan `  R ) `  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
) )  =  ( (RSpan `  R ) `  a ) )
9392sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
( (RSpan `  R
) `  ( (
b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X )  <->  ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
9493anbi2d 740 . . . . . . . . . . 11  |-  ( ( ( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a  ->  (
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k ) )  C_  ( ( S `  ( N `  k ) ) `  X ) )  <->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
9591, 94syl5ibcom 235 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  C_ 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  /\  k  e.  Fin ) )  -> 
( ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
9636, 95sylan2b 492 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  i^i  Fin ) )  -> 
( ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
9796expimpd 629 . . . . . . . 8  |-  ( ph  ->  ( ( k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  i^i  Fin )  /\  ( ( b  e. 
{ c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  |->  ( (coe1 `  b ) `  X
) ) " k
)  =  a )  ->  ( k  e.  ( ~P I  i^i 
Fin )  /\  (
(RSpan `  R ) `  a )  C_  (
( S `  ( N `  k )
) `  X )
) ) )
9897adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  (
( k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  i^i  Fin )  /\  (
( b  e.  {
c  e.  I  |  ( ( deg1  `  R ) `  c )  <_  X }  |->  ( (coe1 `  b
) `  X )
) " k )  =  a )  -> 
( k  e.  ( ~P I  i^i  Fin )  /\  ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) ) )
9998reximdv2 3014 . . . . . 6  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  ( E. k  e.  ( ~P { c  e.  I  |  ( ( deg1  `  R
) `  c )  <_  X }  i^i  Fin ) ( ( b  e.  { c  e.  I  |  ( ( deg1  `  R ) `  c
)  <_  X }  |->  ( (coe1 `  b ) `  X ) ) "
k )  =  a  ->  E. k  e.  ( ~P I  i^i  Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
10035, 99mpd 15 . . . . 5  |-  ( (
ph  /\  ( a  C_  ( ( S `  I ) `  X
)  /\  a  e.  Fin ) )  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
10115, 100sylan2b 492 . . . 4  |-  ( (
ph  /\  a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) )  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( (RSpan `  R ) `  a
)  C_  ( ( S `  ( N `  k ) ) `  X ) )
102 sseq1 3626 . . . . 5  |-  ( ( ( S `  I
) `  X )  =  ( (RSpan `  R ) `  a
)  ->  ( (
( S `  I
) `  X )  C_  ( ( S `  ( N `  k ) ) `  X )  <-> 
( (RSpan `  R
) `  a )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
103102rexbidv 3052 . . . 4  |-  ( ( ( S `  I
) `  X )  =  ( (RSpan `  R ) `  a
)  ->  ( E. k  e.  ( ~P I  i^i  Fin ) ( ( S `  I
) `  X )  C_  ( ( S `  ( N `  k ) ) `  X )  <->  E. k  e.  ( ~P I  i^i  Fin )
( (RSpan `  R
) `  a )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
104101, 103syl5ibrcom 237 . . 3  |-  ( (
ph  /\  a  e.  ( ~P ( ( S `
 I ) `  X )  i^i  Fin ) )  ->  (
( ( S `  I ) `  X
)  =  ( (RSpan `  R ) `  a
)  ->  E. k  e.  ( ~P I  i^i 
Fin ) ( ( S `  I ) `
 X )  C_  ( ( S `  ( N `  k ) ) `  X ) ) )
105104rexlimdva 3031 . 2  |-  ( ph  ->  ( E. a  e.  ( ~P ( ( S `  I ) `
 X )  i^i 
Fin ) ( ( S `  I ) `
 X )  =  ( (RSpan `  R
) `  a )  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
) )
10614, 105mpd 15 1  |-  ( ph  ->  E. k  e.  ( ~P I  i^i  Fin ) ( ( S `
 I ) `  X )  C_  (
( S `  ( N `  k )
) `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   ` cfv 5888   Fincfn 7955    <_ cle 10075   NN0cn0 11292   Basecbs 15857   Ringcrg 18547  LIdealclidl 19170  RSpancrsp 19171  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814  LNoeRclnr 37679  ldgIdlSeqcldgis 37691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-lfig 37638  df-lnm 37646  df-lnr 37680  df-ldgis 37692
This theorem is referenced by:  hbt  37700
  Copyright terms: Public domain W3C validator