Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmullem Structured version   Visualization version   Unicode version

Theorem fperiodmullem 39517
Description: A function with period T is also periodic with period nonnegative multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmullem.f  |-  ( ph  ->  F : RR --> CC )
fperiodmullem.t  |-  ( ph  ->  T  e.  RR )
fperiodmullem.n  |-  ( ph  ->  N  e.  NN0 )
fperiodmullem.x  |-  ( ph  ->  X  e.  RR )
fperiodmullem.per  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
Assertion
Ref Expression
fperiodmullem  |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
Distinct variable groups:    x, F    x, T    x, X    ph, x
Allowed substitution hint:    N( x)

Proof of Theorem fperiodmullem
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fperiodmullem.n . 2  |-  ( ph  ->  N  e.  NN0 )
2 oveq1 6657 . . . . . . 7  |-  ( n  =  0  ->  (
n  x.  T )  =  ( 0  x.  T ) )
32oveq2d 6666 . . . . . 6  |-  ( n  =  0  ->  ( X  +  ( n  x.  T ) )  =  ( X  +  ( 0  x.  T ) ) )
43fveq2d 6195 . . . . 5  |-  ( n  =  0  ->  ( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  ( X  +  (
0  x.  T ) ) ) )
54eqeq1d 2624 . . . 4  |-  ( n  =  0  ->  (
( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  X )  <->  ( F `  ( X  +  ( 0  x.  T ) ) )  =  ( F `  X ) ) )
65imbi2d 330 . . 3  |-  ( n  =  0  ->  (
( ph  ->  ( F `
 ( X  +  ( n  x.  T
) ) )  =  ( F `  X
) )  <->  ( ph  ->  ( F `  ( X  +  ( 0  x.  T ) ) )  =  ( F `
 X ) ) ) )
7 oveq1 6657 . . . . . . 7  |-  ( n  =  m  ->  (
n  x.  T )  =  ( m  x.  T ) )
87oveq2d 6666 . . . . . 6  |-  ( n  =  m  ->  ( X  +  ( n  x.  T ) )  =  ( X  +  ( m  x.  T ) ) )
98fveq2d 6195 . . . . 5  |-  ( n  =  m  ->  ( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  ( X  +  (
m  x.  T ) ) ) )
109eqeq1d 2624 . . . 4  |-  ( n  =  m  ->  (
( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  X )  <->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) ) )
1110imbi2d 330 . . 3  |-  ( n  =  m  ->  (
( ph  ->  ( F `
 ( X  +  ( n  x.  T
) ) )  =  ( F `  X
) )  <->  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) ) ) )
12 oveq1 6657 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  T )  =  ( ( m  +  1 )  x.  T ) )
1312oveq2d 6666 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( X  +  ( n  x.  T ) )  =  ( X  +  ( ( m  +  1 )  x.  T ) ) )
1413fveq2d 6195 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  ( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  ( X  +  (
( m  +  1 )  x.  T ) ) ) )
1514eqeq1d 2624 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  X )  <->  ( F `  ( X  +  ( ( m  +  1 )  x.  T ) ) )  =  ( F `  X ) ) )
1615imbi2d 330 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( ph  ->  ( F `
 ( X  +  ( n  x.  T
) ) )  =  ( F `  X
) )  <->  ( ph  ->  ( F `  ( X  +  ( (
m  +  1 )  x.  T ) ) )  =  ( F `
 X ) ) ) )
17 oveq1 6657 . . . . . . 7  |-  ( n  =  N  ->  (
n  x.  T )  =  ( N  x.  T ) )
1817oveq2d 6666 . . . . . 6  |-  ( n  =  N  ->  ( X  +  ( n  x.  T ) )  =  ( X  +  ( N  x.  T ) ) )
1918fveq2d 6195 . . . . 5  |-  ( n  =  N  ->  ( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  ( X  +  ( N  x.  T )
) ) )
2019eqeq1d 2624 . . . 4  |-  ( n  =  N  ->  (
( F `  ( X  +  ( n  x.  T ) ) )  =  ( F `  X )  <->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) ) )
2120imbi2d 330 . . 3  |-  ( n  =  N  ->  (
( ph  ->  ( F `
 ( X  +  ( n  x.  T
) ) )  =  ( F `  X
) )  <->  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) ) ) )
22 fperiodmullem.t . . . . . . . 8  |-  ( ph  ->  T  e.  RR )
2322recnd 10068 . . . . . . 7  |-  ( ph  ->  T  e.  CC )
2423mul02d 10234 . . . . . 6  |-  ( ph  ->  ( 0  x.  T
)  =  0 )
2524oveq2d 6666 . . . . 5  |-  ( ph  ->  ( X  +  ( 0  x.  T ) )  =  ( X  +  0 ) )
26 fperiodmullem.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
2726recnd 10068 . . . . . 6  |-  ( ph  ->  X  e.  CC )
2827addid1d 10236 . . . . 5  |-  ( ph  ->  ( X  +  0 )  =  X )
2925, 28eqtrd 2656 . . . 4  |-  ( ph  ->  ( X  +  ( 0  x.  T ) )  =  X )
3029fveq2d 6195 . . 3  |-  ( ph  ->  ( F `  ( X  +  ( 0  x.  T ) ) )  =  ( F `
 X ) )
31 simp3 1063 . . . . 5  |-  ( ( m  e.  NN0  /\  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ph )
32 simp1 1061 . . . . 5  |-  ( ( m  e.  NN0  /\  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  m  e.  NN0 )
33 simpr 477 . . . . . . 7  |-  ( ( ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ph )
34 simpl 473 . . . . . . 7  |-  ( ( ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) ) )
3533, 34mpd 15 . . . . . 6  |-  ( ( ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )
36353adant1 1079 . . . . 5  |-  ( ( m  e.  NN0  /\  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )
37 nn0cn 11302 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  m  e.  CC )
3837adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  CC )
39 1cnd 10056 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  1  e.  CC )
4023adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  T  e.  CC )
4138, 39, 40adddird 10065 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  +  1 )  x.  T )  =  ( ( m  x.  T )  +  ( 1  x.  T ) ) )
4241oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( X  +  ( ( m  +  1 )  x.  T ) )  =  ( X  +  ( ( m  x.  T
)  +  ( 1  x.  T ) ) ) )
4327adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  X  e.  CC )
4438, 40mulcld 10060 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  x.  T )  e.  CC )
4539, 40mulcld 10060 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  x.  T )  e.  CC )
4643, 44, 45addassd 10062 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( X  +  ( m  x.  T ) )  +  ( 1  x.  T
) )  =  ( X  +  ( ( m  x.  T )  +  ( 1  x.  T ) ) ) )
4740mulid2d 10058 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 1  x.  T )  =  T )
4847oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( X  +  ( m  x.  T ) )  +  ( 1  x.  T
) )  =  ( ( X  +  ( m  x.  T ) )  +  T ) )
4942, 46, 483eqtr2d 2662 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( X  +  ( ( m  +  1 )  x.  T ) )  =  ( ( X  +  ( m  x.  T
) )  +  T
) )
5049fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( F `  ( X  +  ( ( m  +  1 )  x.  T ) ) )  =  ( F `  ( ( X  +  ( m  x.  T ) )  +  T ) ) )
51503adant3 1081 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 
/\  ( F `  ( X  +  (
m  x.  T ) ) )  =  ( F `  X ) )  ->  ( F `  ( X  +  ( ( m  +  1 )  x.  T ) ) )  =  ( F `  ( ( X  +  ( m  x.  T ) )  +  T ) ) )
5226adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  X  e.  RR )
53 nn0re 11301 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  m  e.  RR )
5453adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  RR )
5522adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  T  e.  RR )
5654, 55remulcld 10070 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  x.  T )  e.  RR )
5752, 56readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( X  +  ( m  x.  T ) )  e.  RR )
5857ex 450 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  NN0  ->  ( X  +  ( m  x.  T ) )  e.  RR ) )
5958imdistani 726 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ph  /\  ( X  +  ( m  x.  T ) )  e.  RR ) )
60 eleq1 2689 . . . . . . . . . . 11  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  (
x  e.  RR  <->  ( X  +  ( m  x.  T ) )  e.  RR ) )
6160anbi2d 740 . . . . . . . . . 10  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  (
( ph  /\  x  e.  RR )  <->  ( ph  /\  ( X  +  ( m  x.  T ) )  e.  RR ) ) )
62 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  (
x  +  T )  =  ( ( X  +  ( m  x.  T ) )  +  T ) )
6362fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  ( F `  ( x  +  T ) )  =  ( F `  (
( X  +  ( m  x.  T ) )  +  T ) ) )
64 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  ( F `  x )  =  ( F `  ( X  +  (
m  x.  T ) ) ) )
6563, 64eqeq12d 2637 . . . . . . . . . 10  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  (
( F `  (
x  +  T ) )  =  ( F `
 x )  <->  ( F `  ( ( X  +  ( m  x.  T
) )  +  T
) )  =  ( F `  ( X  +  ( m  x.  T ) ) ) ) )
6661, 65imbi12d 334 . . . . . . . . 9  |-  ( x  =  ( X  +  ( m  x.  T
) )  ->  (
( ( ph  /\  x  e.  RR )  ->  ( F `  (
x  +  T ) )  =  ( F `
 x ) )  <-> 
( ( ph  /\  ( X  +  (
m  x.  T ) )  e.  RR )  ->  ( F `  ( ( X  +  ( m  x.  T
) )  +  T
) )  =  ( F `  ( X  +  ( m  x.  T ) ) ) ) ) )
67 fperiodmullem.per . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
6866, 67vtoclg 3266 . . . . . . . 8  |-  ( ( X  +  ( m  x.  T ) )  e.  RR  ->  (
( ph  /\  ( X  +  ( m  x.  T ) )  e.  RR )  ->  ( F `  ( ( X  +  ( m  x.  T ) )  +  T ) )  =  ( F `  ( X  +  ( m  x.  T ) ) ) ) )
6957, 59, 68sylc 65 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( F `  ( ( X  +  ( m  x.  T
) )  +  T
) )  =  ( F `  ( X  +  ( m  x.  T ) ) ) )
70693adant3 1081 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 
/\  ( F `  ( X  +  (
m  x.  T ) ) )  =  ( F `  X ) )  ->  ( F `  ( ( X  +  ( m  x.  T
) )  +  T
) )  =  ( F `  ( X  +  ( m  x.  T ) ) ) )
71 simp3 1063 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 
/\  ( F `  ( X  +  (
m  x.  T ) ) )  =  ( F `  X ) )  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )
7251, 70, 713eqtrd 2660 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 
/\  ( F `  ( X  +  (
m  x.  T ) ) )  =  ( F `  X ) )  ->  ( F `  ( X  +  ( ( m  +  1 )  x.  T ) ) )  =  ( F `  X ) )
7331, 32, 36, 72syl3anc 1326 . . . 4  |-  ( ( m  e.  NN0  /\  ( ph  ->  ( F `  ( X  +  ( m  x.  T ) ) )  =  ( F `  X ) )  /\  ph )  ->  ( F `  ( X  +  ( (
m  +  1 )  x.  T ) ) )  =  ( F `
 X ) )
74733exp 1264 . . 3  |-  ( m  e.  NN0  ->  ( (
ph  ->  ( F `  ( X  +  (
m  x.  T ) ) )  =  ( F `  X ) )  ->  ( ph  ->  ( F `  ( X  +  ( (
m  +  1 )  x.  T ) ) )  =  ( F `
 X ) ) ) )
756, 11, 16, 21, 30, 74nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) ) )
761, 75mpcom 38 1  |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  fperiodmul  39518
  Copyright terms: Public domain W3C validator