MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum0diaglem Structured version   Visualization version   Unicode version

Theorem fsum0diaglem 14508
Description: Lemma for fsum0diag 14509. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
fsum0diaglem  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Distinct variable group:    j, k, N

Proof of Theorem fsum0diaglem
StepHypRef Expression
1 elfzle1 12344 . . . . . . 7  |-  ( j  e.  ( 0 ... N )  ->  0  <_  j )
21adantr 481 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  0  <_  j
)
3 elfz3nn0 12434 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
43adantr 481 . . . . . . . . 9  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  NN0 )
54nn0zd 11480 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  ZZ )
65zred 11482 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  RR )
7 elfzelz 12342 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
87adantr 481 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ZZ )
98zred 11482 . . . . . . 7  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  RR )
106, 9subge02d 10619 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0  <_ 
j  <->  ( N  -  j )  <_  N
) )
112, 10mpbid 222 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  <_  N
)
125, 8zsubcld 11487 . . . . . 6  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  j )  e.  ZZ )
13 eluz 11701 . . . . . 6  |-  ( ( ( N  -  j
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  j ) )  <->  ( N  -  j )  <_  N ) )
1412, 5, 13syl2anc 693 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  e.  ( ZZ>= `  ( N  -  j ) )  <-> 
( N  -  j
)  <_  N )
)
1511, 14mpbird 247 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  N  e.  (
ZZ>= `  ( N  -  j ) ) )
16 fzss2 12381 . . . 4  |-  ( N  e.  ( ZZ>= `  ( N  -  j )
)  ->  ( 0 ... ( N  -  j ) )  C_  ( 0 ... N
) )
1715, 16syl 17 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( 0 ... ( N  -  j
) )  C_  (
0 ... N ) )
18 simpr 477 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... ( N  -  j ) ) )
1917, 18sseldd 3604 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ( 0 ... N ) )
20 elfzelz 12342 . . . . . 6  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  e.  ZZ )
2120adantl 482 . . . . 5  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  ZZ )
2221zred 11482 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  e.  RR )
23 elfzle2 12345 . . . . 5  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  k  <_  ( N  -  j
) )
2423adantl 482 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  k  <_  ( N  -  j )
)
2522, 6, 9, 24lesubd 10631 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  <_  ( N  -  k )
)
26 elfzuz 12338 . . . . 5  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ( ZZ>= `  0 )
)
2726adantr 481 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  (
ZZ>= `  0 ) )
285, 21zsubcld 11487 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( N  -  k )  e.  ZZ )
29 elfz5 12334 . . . 4  |-  ( ( j  e.  ( ZZ>= ` 
0 )  /\  ( N  -  k )  e.  ZZ )  ->  (
j  e.  ( 0 ... ( N  -  k ) )  <->  j  <_  ( N  -  k ) ) )
3027, 28, 29syl2anc 693 . . 3  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( j  e.  ( 0 ... ( N  -  k )
)  <->  j  <_  ( N  -  k )
) )
3125, 30mpbird 247 . 2  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  j  e.  ( 0 ... ( N  -  k ) ) )
3219, 31jca 554 1  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  ( k  e.  ( 0 ... N
)  /\  j  e.  ( 0 ... ( N  -  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  fsum0diag  14509  fprod0diag  14717
  Copyright terms: Public domain W3C validator