MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaleph Structured version   Visualization version   Unicode version

Theorem gchaleph 9493
Description: If  ( aleph `  A ) is a GCH-set and its powerset is well-orderable, then the successor aleph  ( aleph `  suc  A ) is equinumerous to the powerset of  ( aleph `  A
). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchaleph  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( aleph ` 
suc  A )  ~~  ~P ( aleph `  A )
)

Proof of Theorem gchaleph
StepHypRef Expression
1 alephsucpw2 8934 . . 3  |-  -.  ~P ( aleph `  A )  ~<  ( aleph `  suc  A )
2 alephon 8892 . . . . 5  |-  ( aleph ` 
suc  A )  e.  On
3 onenon 8775 . . . . 5  |-  ( (
aleph `  suc  A )  e.  On  ->  ( aleph `  suc  A )  e.  dom  card )
42, 3ax-mp 5 . . . 4  |-  ( aleph ` 
suc  A )  e. 
dom  card
5 simp3 1063 . . . 4  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ~P ( aleph `  A )  e. 
dom  card )
6 domtri2 8815 . . . 4  |-  ( ( ( aleph `  suc  A )  e.  dom  card  /\  ~P ( aleph `  A )  e.  dom  card )  ->  (
( aleph `  suc  A )  ~<_  ~P ( aleph `  A
)  <->  -.  ~P ( aleph `  A )  ~< 
( aleph `  suc  A ) ) )
74, 5, 6sylancr 695 . . 3  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( ( aleph `  suc  A )  ~<_  ~P ( aleph `  A
)  <->  -.  ~P ( aleph `  A )  ~< 
( aleph `  suc  A ) ) )
81, 7mpbiri 248 . 2  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( aleph ` 
suc  A )  ~<_  ~P ( aleph `  A )
)
9 fvex 6201 . . . . . . 7  |-  ( aleph `  A )  e.  _V
10 simp1 1061 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  A  e.  On )
11 alephgeom 8905 . . . . . . . 8  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
1210, 11sylib 208 . . . . . . 7  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  om  C_  ( aleph `  A ) )
13 ssdomg 8001 . . . . . . 7  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
149, 12, 13mpsyl 68 . . . . . 6  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  om  ~<_  ( aleph `  A ) )
15 domnsym 8086 . . . . . 6  |-  ( om  ~<_  ( aleph `  A )  ->  -.  ( aleph `  A
)  ~<  om )
1614, 15syl 17 . . . . 5  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  -.  ( aleph `  A )  ~<  om )
17 isfinite 8549 . . . . 5  |-  ( (
aleph `  A )  e. 
Fin 
<->  ( aleph `  A )  ~<  om )
1816, 17sylnibr 319 . . . 4  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  -.  ( aleph `  A )  e. 
Fin )
19 simp2 1062 . . . . 5  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( aleph `  A )  e. GCH )
20 alephordilem1 8896 . . . . . 6  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
21203ad2ant1 1082 . . . . 5  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( aleph `  A )  ~<  ( aleph `  suc  A ) )
22 gchi 9446 . . . . . 6  |-  ( ( ( aleph `  A )  e. GCH  /\  ( aleph `  A
)  ~<  ( aleph `  suc  A )  /\  ( aleph ` 
suc  A )  ~<  ~P ( aleph `  A )
)  ->  ( aleph `  A )  e.  Fin )
23223expia 1267 . . . . 5  |-  ( ( ( aleph `  A )  e. GCH  /\  ( aleph `  A
)  ~<  ( aleph `  suc  A ) )  ->  (
( aleph `  suc  A ) 
~<  ~P ( aleph `  A
)  ->  ( aleph `  A )  e.  Fin ) )
2419, 21, 23syl2anc 693 . . . 4  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( ( aleph `  suc  A ) 
~<  ~P ( aleph `  A
)  ->  ( aleph `  A )  e.  Fin ) )
2518, 24mtod 189 . . 3  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  -.  ( aleph `  suc  A ) 
~<  ~P ( aleph `  A
) )
26 domtri2 8815 . . . 4  |-  ( ( ~P ( aleph `  A
)  e.  dom  card  /\  ( aleph `  suc  A )  e.  dom  card )  ->  ( ~P ( aleph `  A )  ~<_  ( aleph ` 
suc  A )  <->  -.  ( aleph `  suc  A ) 
~<  ~P ( aleph `  A
) ) )
275, 4, 26sylancl 694 . . 3  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( ~P ( aleph `  A )  ~<_  ( aleph `  suc  A )  <->  -.  ( aleph `  suc  A ) 
~<  ~P ( aleph `  A
) ) )
2825, 27mpbird 247 . 2  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ~P ( aleph `  A )  ~<_  (
aleph `  suc  A ) )
29 sbth 8080 . 2  |-  ( ( ( aleph `  suc  A )  ~<_  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~<_  (
aleph `  suc  A ) )  ->  ( aleph ` 
suc  A )  ~~  ~P ( aleph `  A )
)
308, 28, 29syl2anc 693 1  |-  ( ( A  e.  On  /\  ( aleph `  A )  e. GCH  /\  ~P ( aleph `  A )  e.  dom  card )  ->  ( aleph ` 
suc  A )  ~~  ~P ( aleph `  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   Oncon0 5723   suc csuc 5725   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761   alephcale 8762  GCHcgch 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-gch 9443
This theorem is referenced by:  gchaleph2  9494
  Copyright terms: Public domain W3C validator