MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   Unicode version

Theorem axgroth3 9653
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 9257 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 9647 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )
2 ssid 3624 . . . . . . . . . . . 12  |-  z  C_  z
3 sseq1 3626 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  (
v  C_  z  <->  z  C_  z ) )
4 elequ1 1997 . . . . . . . . . . . . . 14  |-  ( v  =  z  ->  (
v  e.  w  <->  z  e.  w ) )
53, 4imbi12d 334 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
( v  C_  z  ->  v  e.  w )  <-> 
( z  C_  z  ->  z  e.  w ) ) )
65spv 2260 . . . . . . . . . . . 12  |-  ( A. v ( v  C_  z  ->  v  e.  w
)  ->  ( z  C_  z  ->  z  e.  w ) )
72, 6mpi 20 . . . . . . . . . . 11  |-  ( A. v ( v  C_  z  ->  v  e.  w
)  ->  z  e.  w )
87reximi 3011 . . . . . . . . . 10  |-  ( E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
)  ->  E. w  e.  y  z  e.  w )
9 eluni2 4440 . . . . . . . . . 10  |-  ( z  e.  U. y  <->  E. w  e.  y  z  e.  w )
108, 9sylibr 224 . . . . . . . . 9  |-  ( E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
)  ->  z  e.  U. y )
1110adantl 482 . . . . . . . 8  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  ->  z  e.  U. y )
1211ralimi 2952 . . . . . . 7  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  ->  A. z  e.  y  z  e.  U. y )
13 dfss3 3592 . . . . . . 7  |-  ( y 
C_  U. y  <->  A. z  e.  y  z  e.  U. y )
1412, 13sylibr 224 . . . . . 6  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  ->  y  C_  U. y )
15 ne0i 3921 . . . . . . . . . . 11  |-  ( x  e.  y  ->  y  =/=  (/) )
16 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
1716dominf 9267 . . . . . . . . . . 11  |-  ( ( y  =/=  (/)  /\  y  C_ 
U. y )  ->  om 
~<_  y )
1815, 17sylan 488 . . . . . . . . . 10  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  om  ~<_  y )
19 grothac 9652 . . . . . . . . . . . 12  |-  dom  card  =  _V
2016, 19eleqtrri 2700 . . . . . . . . . . 11  |-  y  e. 
dom  card
21 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
2221, 19eleqtrri 2700 . . . . . . . . . . 11  |-  z  e. 
dom  card
23 infdif2 9032 . . . . . . . . . . 11  |-  ( ( y  e.  dom  card  /\  z  e.  dom  card  /\ 
om  ~<_  y )  -> 
( ( y  \ 
z )  ~<_  z  <->  y  ~<_  z ) )
2420, 22, 23mp3an12 1414 . . . . . . . . . 10  |-  ( om  ~<_  y  ->  ( (
y  \  z )  ~<_  z 
<->  y  ~<_  z ) )
2518, 24syl 17 . . . . . . . . 9  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( y 
\  z )  ~<_  z  <-> 
y  ~<_  z ) )
2625orbi1d 739 . . . . . . . 8  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( ( y  \  z )  ~<_  z  \/  z  e.  y )  <->  ( y  ~<_  z  \/  z  e.  y ) ) )
2726imbi2d 330 . . . . . . 7  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( ( z 
C_  y  ->  (
( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
2827albidv 1849 . . . . . 6  |-  ( ( x  e.  y  /\  y  C_  U. y )  ->  ( A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) )  <->  A. z ( z 
C_  y  ->  (
y  ~<_  z  \/  z  e.  y ) ) ) )
2914, 28sylan2 491 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  -> 
( A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  A. z
( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3029pm5.32i 669 . . . 4  |-  ( ( ( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
31 df-3an 1039 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )
32 df-3an 1039 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) )  <->  ( (
x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3330, 31, 323bitr4i 292 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
3433exbii 1774 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( y  ~<_  z  \/  z  e.  y ) ) ) )
351, 34mpbir 221 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v ( v  C_  z  ->  v  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653   dom cdm 5114   omcom 7065    ~<_ cdom 7953   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-cc 9257  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  axgroth4  9654
  Copyright terms: Public domain W3C validator