| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axgroth3 | Structured version Visualization version Unicode version | ||
| Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 9257 is used to derive this version. (Contributed by NM, 26-Mar-2007.) |
| Ref | Expression |
|---|---|
| axgroth3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth2 9647 |
. 2
| |
| 2 | ssid 3624 |
. . . . . . . . . . . 12
| |
| 3 | sseq1 3626 |
. . . . . . . . . . . . . 14
| |
| 4 | elequ1 1997 |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | imbi12d 334 |
. . . . . . . . . . . . 13
|
| 6 | 5 | spv 2260 |
. . . . . . . . . . . 12
|
| 7 | 2, 6 | mpi 20 |
. . . . . . . . . . 11
|
| 8 | 7 | reximi 3011 |
. . . . . . . . . 10
|
| 9 | eluni2 4440 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | sylibr 224 |
. . . . . . . . 9
|
| 11 | 10 | adantl 482 |
. . . . . . . 8
|
| 12 | 11 | ralimi 2952 |
. . . . . . 7
|
| 13 | dfss3 3592 |
. . . . . . 7
| |
| 14 | 12, 13 | sylibr 224 |
. . . . . 6
|
| 15 | ne0i 3921 |
. . . . . . . . . . 11
| |
| 16 | vex 3203 |
. . . . . . . . . . . 12
| |
| 17 | 16 | dominf 9267 |
. . . . . . . . . . 11
|
| 18 | 15, 17 | sylan 488 |
. . . . . . . . . 10
|
| 19 | grothac 9652 |
. . . . . . . . . . . 12
| |
| 20 | 16, 19 | eleqtrri 2700 |
. . . . . . . . . . 11
|
| 21 | vex 3203 |
. . . . . . . . . . . 12
| |
| 22 | 21, 19 | eleqtrri 2700 |
. . . . . . . . . . 11
|
| 23 | infdif2 9032 |
. . . . . . . . . . 11
| |
| 24 | 20, 22, 23 | mp3an12 1414 |
. . . . . . . . . 10
|
| 25 | 18, 24 | syl 17 |
. . . . . . . . 9
|
| 26 | 25 | orbi1d 739 |
. . . . . . . 8
|
| 27 | 26 | imbi2d 330 |
. . . . . . 7
|
| 28 | 27 | albidv 1849 |
. . . . . 6
|
| 29 | 14, 28 | sylan2 491 |
. . . . 5
|
| 30 | 29 | pm5.32i 669 |
. . . 4
|
| 31 | df-3an 1039 |
. . . 4
| |
| 32 | df-3an 1039 |
. . . 4
| |
| 33 | 30, 31, 32 | 3bitr4i 292 |
. . 3
|
| 34 | 33 | exbii 1774 |
. 2
|
| 35 | 1, 34 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-cc 9257 ax-groth 9645 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-card 8765 df-cda 8990 |
| This theorem is referenced by: axgroth4 9654 |
| Copyright terms: Public domain | W3C validator |