MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   Unicode version

Theorem gsumwrev 17796
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b  |-  B  =  ( Base `  M
)
gsumwrev.o  |-  O  =  (oppg
`  M )
Assertion
Ref Expression
gsumwrev  |-  ( ( M  e.  Mnd  /\  W  e. Word  B )  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) )

Proof of Theorem gsumwrev
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( x  =  (/)  ->  ( O 
gsumg  x )  =  ( O  gsumg  (/) ) )
2 fveq2 6191 . . . . . . 7  |-  ( x  =  (/)  ->  (reverse `  x
)  =  (reverse `  (/) ) )
3 rev0 13513 . . . . . . 7  |-  (reverse `  (/) )  =  (/)
42, 3syl6eq 2672 . . . . . 6  |-  ( x  =  (/)  ->  (reverse `  x
)  =  (/) )
54oveq2d 6666 . . . . 5  |-  ( x  =  (/)  ->  ( M 
gsumg  (reverse `  x ) )  =  ( M  gsumg  (/) ) )
61, 5eqeq12d 2637 . . . 4  |-  ( x  =  (/)  ->  ( ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  (/) )  =  ( M  gsumg  (/) ) ) )
76imbi2d 330 . . 3  |-  ( x  =  (/)  ->  ( ( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  (/) )  =  ( M 
gsumg  (/) ) ) ) )
8 oveq2 6658 . . . . 5  |-  ( x  =  y  ->  ( O  gsumg  x )  =  ( O  gsumg  y ) )
9 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (reverse `  x )  =  (reverse `  y ) )
109oveq2d 6666 . . . . 5  |-  ( x  =  y  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  y ) ) )
118, 10eqeq12d 2637 . . . 4  |-  ( x  =  y  ->  (
( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) ) ) )
1211imbi2d 330 . . 3  |-  ( x  =  y  ->  (
( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  y )  =  ( M 
gsumg  (reverse `  y ) ) ) ) )
13 oveq2 6658 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  ( O  gsumg  x )  =  ( O  gsumg  ( y ++  <" z "> ) ) )
14 fveq2 6191 . . . . . 6  |-  ( x  =  ( y ++  <" z "> )  ->  (reverse `  x )  =  (reverse `  ( y ++  <" z "> ) ) )
1514oveq2d 6666 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  ( y ++  <" z "> )
) ) )
1613, 15eqeq12d 2637 . . . 4  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x
) )  <->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) )
1716imbi2d 330 . . 3  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( M  e. 
Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x
) ) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
18 oveq2 6658 . . . . 5  |-  ( x  =  W  ->  ( O  gsumg  x )  =  ( O  gsumg  W ) )
19 fveq2 6191 . . . . . 6  |-  ( x  =  W  ->  (reverse `  x )  =  (reverse `  W ) )
2019oveq2d 6666 . . . . 5  |-  ( x  =  W  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  W ) ) )
2118, 20eqeq12d 2637 . . . 4  |-  ( x  =  W  ->  (
( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W
) ) ) )
2221imbi2d 330 . . 3  |-  ( x  =  W  ->  (
( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  W )  =  ( M 
gsumg  (reverse `  W ) ) ) ) )
23 gsumwrev.o . . . . . . 7  |-  O  =  (oppg
`  M )
24 eqid 2622 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
2523, 24oppgid 17786 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  O
)
2625gsum0 17278 . . . . 5  |-  ( O 
gsumg  (/) )  =  ( 0g
`  M )
2724gsum0 17278 . . . . 5  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
2826, 27eqtr4i 2647 . . . 4  |-  ( O 
gsumg  (/) )  =  ( M 
gsumg  (/) )
2928a1i 11 . . 3  |-  ( M  e.  Mnd  ->  ( O  gsumg  (/) )  =  ( M  gsumg  (/) ) )
30 oveq2 6658 . . . . . 6  |-  ( ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y )
)  ->  ( z
( +g  `  M ) ( O  gsumg  y ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
3123oppgmnd 17784 . . . . . . . . . 10  |-  ( M  e.  Mnd  ->  O  e.  Mnd )
3231adantr 481 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  O  e.  Mnd )
33 simprl 794 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  y  e. Word  B )
34 simprr 796 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  z  e.  B )
3534s1cld 13383 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  <" z ">  e. Word  B )
36 gsumwrev.b . . . . . . . . . . 11  |-  B  =  ( Base `  M
)
3723, 36oppgbas 17781 . . . . . . . . . 10  |-  B  =  ( Base `  O
)
38 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
3937, 38gsumccat 17378 . . . . . . . . 9  |-  ( ( O  e.  Mnd  /\  y  e. Word  B  /\  <" z ">  e. Word  B )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O
) ( O  gsumg  <" z "> ) ) )
4032, 33, 35, 39syl3anc 1326 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O
) ( O  gsumg  <" z "> ) ) )
4137gsumws1 17376 . . . . . . . . . . 11  |-  ( z  e.  B  ->  ( O  gsumg 
<" z "> )  =  z )
4241ad2antll 765 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg 
<" z "> )  =  z )
4342oveq2d 6666 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y ) ( +g  `  O ) ( O 
gsumg  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O ) z ) )
44 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
4544, 23, 38oppgplus 17779 . . . . . . . . 9  |-  ( ( O  gsumg  y ) ( +g  `  O ) z )  =  ( z ( +g  `  M ) ( O  gsumg  y ) )
4643, 45syl6eq 2672 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y ) ( +g  `  O ) ( O 
gsumg  <" z "> ) )  =  ( z ( +g  `  M
) ( O  gsumg  y ) ) )
4740, 46eqtrd 2656 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( z ( +g  `  M ) ( O 
gsumg  y ) ) )
48 revccat 13515 . . . . . . . . . . 11  |-  ( ( y  e. Word  B  /\  <" z ">  e. Word  B )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( (reverse `  <" z "> ) ++  (reverse `  y ) ) )
4933, 35, 48syl2anc 693 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( (reverse `  <" z "> ) ++  (reverse `  y ) ) )
50 revs1 13514 . . . . . . . . . . 11  |-  (reverse `  <" z "> )  =  <" z ">
5150oveq1i 6660 . . . . . . . . . 10  |-  ( (reverse `  <" z "> ) ++  (reverse `  y
) )  =  (
<" z "> ++  (reverse `  y ) )
5249, 51syl6eq 2672 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( <" z "> ++  (reverse `  y )
) )
5352oveq2d 6666 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  =  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) ) )
54 simpl 473 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  M  e.  Mnd )
55 revcl 13510 . . . . . . . . . 10  |-  ( y  e. Word  B  ->  (reverse `  y )  e. Word  B
)
5655ad2antrl 764 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  y )  e. Word  B
)
5736, 44gsumccat 17378 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  <" z ">  e. Word  B  /\  (reverse `  y
)  e. Word  B )  ->  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) )  =  ( ( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) ) )
5854, 35, 56, 57syl3anc 1326 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) )  =  ( ( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) ) )
5936gsumws1 17376 . . . . . . . . . 10  |-  ( z  e.  B  ->  ( M  gsumg 
<" z "> )  =  z )
6059ad2antll 765 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg 
<" z "> )  =  z )
6160oveq1d 6665 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
6253, 58, 613eqtrd 2660 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
6347, 62eqeq12d 2637 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  <->  ( z
( +g  `  M ) ( O  gsumg  y ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) ) )
6430, 63syl5ibr 236 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y )  =  ( M  gsumg  (reverse `  y )
)  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) )
6564expcom 451 . . . 4  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( M  e.  Mnd  ->  ( ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
6665a2d 29 . . 3  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ( M  e. 
Mnd  ->  ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) ) )  -> 
( M  e.  Mnd  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
677, 12, 17, 22, 29, 66wrdind 13476 . 2  |-  ( W  e. Word  B  ->  ( M  e.  Mnd  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) ) )
6867impcom 446 1  |-  ( ( M  e.  Mnd  /\  W  e. Word  B )  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   ` cfv 5888  (class class class)co 6650  Word cword 13291   ++ cconcat 13293   <"cs1 13294  reversecreverse 13297   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  oppgcoppg 17775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-reverse 13305  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-oppg 17776
This theorem is referenced by:  symgtrinv  17892
  Copyright terms: Public domain W3C validator