MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdind Structured version   Visualization version   Unicode version

Theorem wrdind 13476
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
wrdind.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
wrdind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
wrdind.3  |-  ( x  =  ( y ++  <" z "> )  ->  ( ph  <->  th )
)
wrdind.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
wrdind.5  |-  ps
wrdind.6  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
wrdind  |-  ( A  e. Word  B  ->  ta )
Distinct variable groups:    x, A    x, y, z, B    ch, x    ph, y, z    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( x, y, z)    ch( y,
z)    th( y, z)    ta( y, z)    A( y, z)

Proof of Theorem wrdind
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 13324 . . 3  |-  ( A  e. Word  B  ->  ( # `
 A )  e. 
NN0 )
2 eqeq2 2633 . . . . . 6  |-  ( n  =  0  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  0 ) )
32imbi1d 331 . . . . 5  |-  ( n  =  0  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  0  ->  ph ) ) )
43ralbidv 2986 . . . 4  |-  ( n  =  0  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  0  ->  ph ) ) )
5 eqeq2 2633 . . . . . 6  |-  ( n  =  m  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  m ) )
65imbi1d 331 . . . . 5  |-  ( n  =  m  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  m  ->  ph ) ) )
76ralbidv 2986 . . . 4  |-  ( n  =  m  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  m  ->  ph ) ) )
8 eqeq2 2633 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( # `  x )  =  n  <->  ( # `  x
)  =  ( m  +  1 ) ) )
98imbi1d 331 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( # `  x
)  =  n  ->  ph )  <->  ( ( # `  x )  =  ( m  +  1 )  ->  ph ) ) )
109ralbidv 2986 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  ( A. x  e. Word  B ( ( # `  x
)  =  n  ->  ph )  <->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
11 eqeq2 2633 . . . . . 6  |-  ( n  =  ( # `  A
)  ->  ( ( # `
 x )  =  n  <->  ( # `  x
)  =  ( # `  A ) ) )
1211imbi1d 331 . . . . 5  |-  ( n  =  ( # `  A
)  ->  ( (
( # `  x )  =  n  ->  ph )  <->  ( ( # `  x
)  =  ( # `  A )  ->  ph )
) )
1312ralbidv 2986 . . . 4  |-  ( n  =  ( # `  A
)  ->  ( A. x  e. Word  B (
( # `  x )  =  n  ->  ph )  <->  A. x  e. Word  B ( ( # `  x
)  =  ( # `  A )  ->  ph )
) )
14 hasheq0 13154 . . . . . 6  |-  ( x  e. Word  B  ->  (
( # `  x )  =  0  <->  x  =  (/) ) )
15 wrdind.5 . . . . . . 7  |-  ps
16 wrdind.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1715, 16mpbiri 248 . . . . . 6  |-  ( x  =  (/)  ->  ph )
1814, 17syl6bi 243 . . . . 5  |-  ( x  e. Word  B  ->  (
( # `  x )  =  0  ->  ph )
)
1918rgen 2922 . . . 4  |-  A. x  e. Word  B ( ( # `  x )  =  0  ->  ph )
20 fveq2 6191 . . . . . . . 8  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
2120eqeq1d 2624 . . . . . . 7  |-  ( x  =  y  ->  (
( # `  x )  =  m  <->  ( # `  y
)  =  m ) )
22 wrdind.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2321, 22imbi12d 334 . . . . . 6  |-  ( x  =  y  ->  (
( ( # `  x
)  =  m  ->  ph )  <->  ( ( # `  y )  =  m  ->  ch ) ) )
2423cbvralv 3171 . . . . 5  |-  ( A. x  e. Word  B (
( # `  x )  =  m  ->  ph )  <->  A. y  e. Word  B ( ( # `  y
)  =  m  ->  ch ) )
25 swrdcl 13419 . . . . . . . . . . . 12  |-  ( x  e. Word  B  ->  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  e. Word  B )
2625ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  e. Word  B
)
27 simplr 792 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )
28 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  e. Word  B
)
29 fzossfz 12488 . . . . . . . . . . . . . 14  |-  ( 0..^ ( # `  x
) )  C_  (
0 ... ( # `  x
) )
30 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  x
)  =  ( m  +  1 ) )
31 nn0p1nn 11332 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
3231ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( m  + 
1 )  e.  NN )
3330, 32eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  x
)  e.  NN )
34 fzo0end 12560 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  e.  NN  ->  ( ( # `
 x )  - 
1 )  e.  ( 0..^ ( # `  x
) ) )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  e.  ( 0..^ ( # `  x
) ) )
3629, 35sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  e.  ( 0 ... ( # `  x
) ) )
37 swrd0len 13422 . . . . . . . . . . . . 13  |-  ( ( x  e. Word  B  /\  ( ( # `  x
)  -  1 )  e.  ( 0 ... ( # `  x
) ) )  -> 
( # `  ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) )  =  ( ( # `  x
)  -  1 ) )
3828, 36, 37syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  ( ( # `  x
)  -  1 ) )
3930oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  -  1 )  =  ( ( m  +  1 )  -  1 ) )
40 nn0cn 11302 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  m  e.  CC )
4140ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  m  e.  CC )
42 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
43 pncan 10287 . . . . . . . . . . . . 13  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( ( m  + 
1 )  -  1 )  =  m )
4441, 42, 43sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( m  +  1 )  - 
1 )  =  m )
4538, 39, 443eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m )
46 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( # `
 y )  =  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) )
4746eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( # `  y )  =  m  <->  ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m ) )
48 vex 3203 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
4948, 22sbcie 3470 . . . . . . . . . . . . . 14  |-  ( [. y  /  x ]. ph  <->  ch )
50 dfsbcq 3437 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( [. y  /  x ]. ph  <->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) )
5149, 50syl5bbr 274 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( ch 
<-> 
[. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) )
5247, 51imbi12d 334 . . . . . . . . . . . 12  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( ( # `  y
)  =  m  ->  ch )  <->  ( ( # `  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) )  =  m  ->  [. ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
)  /  x ]. ph ) ) )
5352rspcv 3305 . . . . . . . . . . 11  |-  ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  e. Word  B  -> 
( A. y  e. Word  B ( ( # `  y )  =  m  ->  ch )  -> 
( ( # `  (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )  =  m  ->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph ) ) )
5426, 27, 45, 53syl3c 66 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph )
5533nnge1d 11063 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  1  <_  ( # `
 x ) )
56 wrdlenge1n0 13340 . . . . . . . . . . . . . 14  |-  ( x  e. Word  B  ->  (
x  =/=  (/)  <->  1  <_  (
# `  x )
) )
5756ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( x  =/=  (/) 
<->  1  <_  ( # `  x
) ) )
5855, 57mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =/=  (/) )
59 lswcl 13355 . . . . . . . . . . . 12  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  ( lastS  `  x )  e.  B
)
6028, 58, 59syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( lastS  `  x )  e.  B )
61 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
y ++  <" z "> )  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" z "> ) )
6261sbceq1d 3440 . . . . . . . . . . . . 13  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  ( [. ( y ++  <" z "> )  /  x ]. ph  <->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" z "> )  /  x ]. ph ) )
6350, 62imbi12d 334 . . . . . . . . . . . 12  |-  ( y  =  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  ->  (
( [. y  /  x ]. ph  ->  [. ( y ++ 
<" z "> )  /  x ]. ph )  <->  (
[. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  /  x ]. ph ) ) )
64 s1eq 13380 . . . . . . . . . . . . . . 15  |-  ( z  =  ( lastS  `  x
)  ->  <" z ">  =  <" ( lastS  `  x ) "> )
6564oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( z  =  ( lastS  `  x
)  ->  ( (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" ( lastS  `  x ) "> ) )
6665sbceq1d 3440 . . . . . . . . . . . . 13  |-  ( z  =  ( lastS  `  x
)  ->  ( [. ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" z "> )  /  x ]. ph  <->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  /  x ]. ph )
)
6766imbi2d 330 . . . . . . . . . . . 12  |-  ( z  =  ( lastS  `  x
)  ->  ( ( [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" z "> )  /  x ]. ph )  <->  ( [. ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
) )
68 wrdind.6 . . . . . . . . . . . . 13  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ch  ->  th )
)
69 ovex 6678 . . . . . . . . . . . . . 14  |-  ( y ++ 
<" z "> )  e.  _V
70 wrdind.3 . . . . . . . . . . . . . 14  |-  ( x  =  ( y ++  <" z "> )  ->  ( ph  <->  th )
)
7169, 70sbcie 3470 . . . . . . . . . . . . 13  |-  ( [. ( y ++  <" z "> )  /  x ]. ph  <->  th )
7268, 49, 713imtr4g 285 . . . . . . . . . . . 12  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( [. y  /  x ]. ph  ->  [. (
y ++  <" z "> )  /  x ]. ph ) )
7363, 67, 72vtocl2ga 3274 . . . . . . . . . . 11  |-  ( ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  e. Word  B  /\  ( lastS  `  x )  e.  B )  -> 
( [. ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
7426, 60, 73syl2anc 693 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( [. (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /  x ]. ph  ->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
7554, 74mpd 15 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  [. ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  /  x ]. ph )
76 wrdfin 13323 . . . . . . . . . . . . . 14  |-  ( x  e. Word  B  ->  x  e.  Fin )
7776ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  e.  Fin )
78 hashnncl 13157 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  (
( # `  x )  e.  NN  <->  x  =/=  (/) ) )
7977, 78syl 17 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ( # `  x )  e.  NN  <->  x  =/=  (/) ) )
8033, 79mpbid 222 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =/=  (/) )
81 swrdccatwrd 13468 . . . . . . . . . . . 12  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  (
( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  =  x )
8281eqcomd 2628 . . . . . . . . . . 11  |-  ( ( x  e. Word  B  /\  x  =/=  (/) )  ->  x  =  ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )
)
8328, 80, 82syl2anc 693 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  x  =  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. ) ++  <" ( lastS  `  x ) "> ) )
84 sbceq1a 3446 . . . . . . . . . 10  |-  ( x  =  ( ( x substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) ++  <" ( lastS  `  x
) "> )  ->  ( ph  <->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
8583, 84syl 17 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ( ph  <->  [. ( ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ++  <" ( lastS  `  x ) "> )  /  x ]. ph )
)
8675, 85mpbird 247 . . . . . . . 8  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  (
x  e. Word  B  /\  ( # `  x )  =  ( m  + 
1 ) ) )  ->  ph )
8786expr 643 . . . . . . 7  |-  ( ( ( m  e.  NN0  /\ 
A. y  e. Word  B
( ( # `  y
)  =  m  ->  ch ) )  /\  x  e. Word  B )  ->  (
( # `  x )  =  ( m  + 
1 )  ->  ph )
)
8887ralrimiva 2966 . . . . . 6  |-  ( ( m  e.  NN0  /\  A. y  e. Word  B ( ( # `  y
)  =  m  ->  ch ) )  ->  A. x  e. Word  B ( ( # `  x )  =  ( m  +  1 )  ->  ph ) )
8988ex 450 . . . . 5  |-  ( m  e.  NN0  ->  ( A. y  e. Word  B (
( # `  y )  =  m  ->  ch )  ->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
9024, 89syl5bi 232 . . . 4  |-  ( m  e.  NN0  ->  ( A. x  e. Word  B (
( # `  x )  =  m  ->  ph )  ->  A. x  e. Word  B
( ( # `  x
)  =  ( m  +  1 )  ->  ph ) ) )
914, 7, 10, 13, 19, 90nn0ind 11472 . . 3  |-  ( (
# `  A )  e.  NN0  ->  A. x  e. Word  B ( ( # `  x )  =  (
# `  A )  ->  ph ) )
921, 91syl 17 . 2  |-  ( A  e. Word  B  ->  A. x  e. Word  B ( ( # `  x )  =  (
# `  A )  ->  ph ) )
93 eqidd 2623 . 2  |-  ( A  e. Word  B  ->  ( # `
 A )  =  ( # `  A
) )
94 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( # `
 x )  =  ( # `  A
) )
9594eqeq1d 2624 . . . 4  |-  ( x  =  A  ->  (
( # `  x )  =  ( # `  A
)  <->  ( # `  A
)  =  ( # `  A ) ) )
96 wrdind.4 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
9795, 96imbi12d 334 . . 3  |-  ( x  =  A  ->  (
( ( # `  x
)  =  ( # `  A )  ->  ph )  <->  ( ( # `  A
)  =  ( # `  A )  ->  ta ) ) )
9897rspcv 3305 . 2  |-  ( A  e. Word  B  ->  ( A. x  e. Word  B ( ( # `  x
)  =  ( # `  A )  ->  ph )  ->  ( ( # `  A
)  =  ( # `  A )  ->  ta ) ) )
9992, 93, 98mp2d 49 1  |-  ( A  e. Word  B  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [.wsbc 3435   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  frmdgsum  17399  gsumwrev  17796  gsmsymgrfix  17848  efginvrel2  18140  signstfvneq0  30649  signstfvc  30651  mrsubvrs  31419
  Copyright terms: Public domain W3C validator