MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Visualization version   Unicode version

Theorem hsmex 9254
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 8497. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex  |-  ( X  e.  V  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
Distinct variable group:    x, s, X
Allowed substitution hints:    V( x, s)

Proof of Theorem hsmex
Dummy variables  a 
b  c  d  e  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . 5  |-  ( a  =  X  ->  (
x  ~<_  a  <->  x  ~<_  X ) )
21ralbidv 2986 . . . 4  |-  ( a  =  X  ->  ( A. x  e.  ( TC `  { s } ) x  ~<_  a  <->  A. x  e.  ( TC `  {
s } ) x  ~<_  X ) )
32rabbidv 3189 . . 3  |-  ( a  =  X  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  =  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X } )
43eleq1d 2686 . 2  |-  ( a  =  X  ->  ( { s  e.  U. ( R1 " On )  |  A. x  e.  ( TC `  {
s } ) x  ~<_  a }  e.  _V  <->  { s  e.  U. ( R1 " On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
)
5 vex 3203 . . 3  |-  a  e. 
_V
6 eqid 2622 . . 3  |-  ( rec ( ( d  e. 
_V  |->  (har `  ~P ( a  X.  d
) ) ) ,  (har `  ~P a
) )  |`  om )  =  ( rec (
( d  e.  _V  |->  (har `  ~P ( a  X.  d ) ) ) ,  (har `  ~P a ) )  |`  om )
7 rdgeq2 7508 . . . . . 6  |-  ( e  =  b  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  e )  =  rec ( ( f  e. 
_V  |->  U. f ) ,  b ) )
8 unieq 4444 . . . . . . . 8  |-  ( f  =  c  ->  U. f  =  U. c )
98cbvmptv 4750 . . . . . . 7  |-  ( f  e.  _V  |->  U. f
)  =  ( c  e.  _V  |->  U. c
)
10 rdgeq1 7507 . . . . . . 7  |-  ( ( f  e.  _V  |->  U. f )  =  ( c  e.  _V  |->  U. c )  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  b )  =  rec ( ( c  e. 
_V  |->  U. c ) ,  b ) )
119, 10ax-mp 5 . . . . . 6  |-  rec (
( f  e.  _V  |->  U. f ) ,  b )  =  rec (
( c  e.  _V  |->  U. c ) ,  b )
127, 11syl6eq 2672 . . . . 5  |-  ( e  =  b  ->  rec ( ( f  e. 
_V  |->  U. f ) ,  e )  =  rec ( ( c  e. 
_V  |->  U. c ) ,  b ) )
1312reseq1d 5395 . . . 4  |-  ( e  =  b  ->  ( rec ( ( f  e. 
_V  |->  U. f ) ,  e )  |`  om )  =  ( rec (
( c  e.  _V  |->  U. c ) ,  b )  |`  om )
)
1413cbvmptv 4750 . . 3  |-  ( e  e.  _V  |->  ( rec ( ( f  e. 
_V  |->  U. f ) ,  e )  |`  om )
)  =  ( b  e.  _V  |->  ( rec ( ( c  e. 
_V  |->  U. c ) ,  b )  |`  om )
)
15 eqid 2622 . . 3  |-  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  =  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }
16 eqid 2622 . . 3  |- OrdIso (  _E  ,  ( rank " (
( ( e  e. 
_V  |->  ( rec (
( f  e.  _V  |->  U. f ) ,  e )  |`  om )
) `  z ) `  y ) ) )  = OrdIso (  _E  , 
( rank " ( ( ( e  e.  _V  |->  ( rec ( ( f  e.  _V  |->  U. f
) ,  e )  |`  om ) ) `  z ) `  y
) ) )
175, 6, 14, 15, 16hsmexlem6 9253 . 2  |-  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  a }  e.  _V
184, 17vtoclg 3266 1  |-  ( X  e.  V  ->  { s  e.  U. ( R1
" On )  | 
A. x  e.  ( TC `  { s } ) x  ~<_  X }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    X. cxp 5112    |` cres 5116   "cima 5117   Oncon0 5723   ` cfv 5888   omcom 7065   reccrdg 7505    ~<_ cdom 7953  OrdIsocoi 8414  harchar 8461   TCctc 8612   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464  df-tc 8613  df-r1 8627  df-rank 8628
This theorem is referenced by:  hsmex2  9255
  Copyright terms: Public domain W3C validator