MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem6 Structured version   Visualization version   Unicode version

Theorem hsmexlem6 9253
Description: Lemma for hsmex 9254. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x  |-  X  e. 
_V
hsmexlem4.h  |-  H  =  ( rec ( ( z  e.  _V  |->  (har
`  ~P ( X  X.  z ) ) ) ,  (har `  ~P X ) )  |`  om )
hsmexlem4.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
hsmexlem4.s  |-  S  =  { a  e.  U. ( R1 " On )  |  A. b  e.  ( TC `  {
a } ) b  ~<_  X }
hsmexlem4.o  |-  O  = OrdIso
(  _E  ,  (
rank " ( ( U `
 d ) `  c ) ) )
Assertion
Ref Expression
hsmexlem6  |-  S  e. 
_V
Distinct variable groups:    a, c,
d, H    S, c,
d    U, c, d    a,
b, z, X    x, a, y    b, c, d, x, y, z
Allowed substitution hints:    S( x, y, z, a, b)    U( x, y, z, a, b)    H( x, y, z, b)    O( x, y, z, a, b, c, d)    X( x, y, c, d)

Proof of Theorem hsmexlem6
StepHypRef Expression
1 fvex 6201 . 2  |-  ( R1
`  (har `  ~P ( om  X.  U. ran  H ) ) )  e. 
_V
2 hsmexlem4.x . . . . 5  |-  X  e. 
_V
3 hsmexlem4.h . . . . 5  |-  H  =  ( rec ( ( z  e.  _V  |->  (har
`  ~P ( X  X.  z ) ) ) ,  (har `  ~P X ) )  |`  om )
4 hsmexlem4.u . . . . 5  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
5 hsmexlem4.s . . . . 5  |-  S  =  { a  e.  U. ( R1 " On )  |  A. b  e.  ( TC `  {
a } ) b  ~<_  X }
6 hsmexlem4.o . . . . 5  |-  O  = OrdIso
(  _E  ,  (
rank " ( ( U `
 d ) `  c ) ) )
72, 3, 4, 5, 6hsmexlem5 9252 . . . 4  |-  ( d  e.  S  ->  ( rank `  d )  e.  (har `  ~P ( om  X.  U. ran  H
) ) )
8 ssrab2 3687 . . . . . . 7  |-  { a  e.  U. ( R1
" On )  | 
A. b  e.  ( TC `  { a } ) b  ~<_  X }  C_  U. ( R1 " On )
95, 8eqsstri 3635 . . . . . 6  |-  S  C_  U. ( R1 " On )
109sseli 3599 . . . . 5  |-  ( d  e.  S  ->  d  e.  U. ( R1 " On ) )
11 harcl 8466 . . . . . 6  |-  (har `  ~P ( om  X.  U. ran  H ) )  e.  On
12 r1fnon 8630 . . . . . . 7  |-  R1  Fn  On
13 fndm 5990 . . . . . . 7  |-  ( R1  Fn  On  ->  dom  R1  =  On )
1412, 13ax-mp 5 . . . . . 6  |-  dom  R1  =  On
1511, 14eleqtrri 2700 . . . . 5  |-  (har `  ~P ( om  X.  U. ran  H ) )  e. 
dom  R1
16 rankr1ag 8665 . . . . 5  |-  ( ( d  e.  U. ( R1 " On )  /\  (har `  ~P ( om 
X.  U. ran  H ) )  e.  dom  R1 )  ->  ( d  e.  ( R1 `  (har `  ~P ( om  X.  U.
ran  H ) ) )  <->  ( rank `  d
)  e.  (har `  ~P ( om  X.  U. ran  H ) ) ) )
1710, 15, 16sylancl 694 . . . 4  |-  ( d  e.  S  ->  (
d  e.  ( R1
`  (har `  ~P ( om  X.  U. ran  H ) ) )  <->  ( rank `  d )  e.  (har
`  ~P ( om 
X.  U. ran  H ) ) ) )
187, 17mpbird 247 . . 3  |-  ( d  e.  S  ->  d  e.  ( R1 `  (har `  ~P ( om  X.  U.
ran  H ) ) ) )
1918ssriv 3607 . 2  |-  S  C_  ( R1 `  (har `  ~P ( om  X.  U. ran  H ) ) )
201, 19ssexi 4803 1  |-  S  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888   omcom 7065   reccrdg 7505    ~<_ cdom 7953  OrdIsocoi 8414  harchar 8461   TCctc 8612   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464  df-tc 8613  df-r1 8627  df-rank 8628
This theorem is referenced by:  hsmex  9254
  Copyright terms: Public domain W3C validator