Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasgim Structured version   Visualization version   Unicode version

Theorem imasgim 37670
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.)
Hypotheses
Ref Expression
imasgim.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasgim.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasgim.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasgim.r  |-  ( ph  ->  R  e.  Grp )
Assertion
Ref Expression
imasgim  |-  ( ph  ->  F  e.  ( R GrpIso  U ) )

Proof of Theorem imasgim
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2622 . . 3  |-  ( Base `  U )  =  (
Base `  U )
3 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2622 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
5 imasgim.r . . 3  |-  ( ph  ->  R  e.  Grp )
6 imasgim.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
7 imasgim.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqidd 2623 . . . . 5  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  R ) )
9 imasgim.f . . . . . 6  |-  ( ph  ->  F : V -1-1-onto-> B )
10 f1ofo 6144 . . . . . 6  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
119, 10syl 17 . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
129f1ocpbl 16185 . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
c  e.  V  /\  d  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 c )  /\  ( F `  b )  =  ( F `  d ) )  -> 
( F `  (
a ( +g  `  R
) b ) )  =  ( F `  ( c ( +g  `  R ) d ) ) ) )
13 eqid 2622 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
146, 7, 8, 11, 12, 5, 13imasgrp 17531 . . . 4  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  ( 0g `  R ) )  =  ( 0g `  U ) ) )
1514simpld 475 . . 3  |-  ( ph  ->  U  e.  Grp )
166, 7, 11, 5imasbas 16172 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  U ) )
17 f1oeq3 6129 . . . . . . 7  |-  ( B  =  ( Base `  U
)  ->  ( F : V -1-1-onto-> B  <->  F : V -1-1-onto-> ( Base `  U ) ) )
1816, 17syl 17 . . . . . 6  |-  ( ph  ->  ( F : V -1-1-onto-> B  <->  F : V -1-1-onto-> ( Base `  U
) ) )
199, 18mpbid 222 . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> ( Base `  U ) )
20 f1oeq2 6128 . . . . . 6  |-  ( V  =  ( Base `  R
)  ->  ( F : V -1-1-onto-> ( Base `  U
)  <->  F : ( Base `  R ) -1-1-onto-> ( Base `  U
) ) )
217, 20syl 17 . . . . 5  |-  ( ph  ->  ( F : V -1-1-onto-> ( Base `  U )  <->  F :
( Base `  R ) -1-1-onto-> ( Base `  U ) ) )
2219, 21mpbid 222 . . . 4  |-  ( ph  ->  F : ( Base `  R ) -1-1-onto-> ( Base `  U
) )
23 f1of 6137 . . . 4  |-  ( F : ( Base `  R
)
-1-1-onto-> ( Base `  U )  ->  F : ( Base `  R ) --> ( Base `  U ) )
2422, 23syl 17 . . 3  |-  ( ph  ->  F : ( Base `  R ) --> ( Base `  U ) )
257eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( a  e.  V  <->  a  e.  ( Base `  R
) ) )
267eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( b  e.  V  <->  b  e.  ( Base `  R
) ) )
2725, 26anbi12d 747 . . . . 5  |-  ( ph  ->  ( ( a  e.  V  /\  b  e.  V )  <->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
) ) )
2811, 12, 6, 7, 5, 3, 4imasaddval 16192 . . . . . . 7  |-  ( (
ph  /\  a  e.  V  /\  b  e.  V
)  ->  ( ( F `  a )
( +g  `  U ) ( F `  b
) )  =  ( F `  ( a ( +g  `  R
) b ) ) )
2928eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  a  e.  V  /\  b  e.  V
)  ->  ( F `  ( a ( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U
) ( F `  b ) ) )
30293expib 1268 . . . . 5  |-  ( ph  ->  ( ( a  e.  V  /\  b  e.  V )  ->  ( F `  ( a
( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U ) ( F `
 b ) ) ) )
3127, 30sylbird 250 . . . 4  |-  ( ph  ->  ( ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
)  ->  ( F `  ( a ( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U
) ( F `  b ) ) ) )
3231imp 445 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
) )  ->  ( F `  ( a
( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U ) ( F `
 b ) ) )
331, 2, 3, 4, 5, 15, 24, 32isghmd 17669 . 2  |-  ( ph  ->  F  e.  ( R 
GrpHom  U ) )
341, 2isgim 17704 . 2  |-  ( F  e.  ( R GrpIso  U
)  <->  ( F  e.  ( R  GrpHom  U )  /\  F : (
Base `  R ) -1-1-onto-> ( Base `  U ) ) )
3533, 22, 34sylanbrc 698 1  |-  ( ph  ->  F  e.  ( R GrpIso  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100    "s cimas 16164   Grpcgrp 17422    GrpHom cghm 17657   GrpIso cgim 17699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ghm 17658  df-gim 17701
This theorem is referenced by:  isnumbasgrplem1  37671
  Copyright terms: Public domain W3C validator