MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Structured version   Visualization version   Unicode version

Theorem infxp 9037
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 7983 . . 3  |-  ( B 
~<  A  ->  B  ~<_  A )
2 infxpabs 9034 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
3 infunabs 9029 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  u.  B )  ~~  A )
433expa 1265 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~~  A )
54adantrl 752 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  u.  B
)  ~~  A )
65ensymd 8007 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  ->  A  ~~  ( A  u.  B ) )
7 entr 8008 . . . . . 6  |-  ( ( ( A  X.  B
)  ~~  A  /\  A  ~~  ( A  u.  B ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
82, 6, 7syl2anc 693 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
98expr 643 . . . 4  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  =/=  (/) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B
) ) )
109adantrl 752 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
111, 10syl5 34 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
12 domtri2 8815 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
1312ad2ant2r 783 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
14 xpcomeng 8052 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1514ad2ant2r 783 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1615adantr 481 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
17 simplrl 800 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  e.  dom  card )
18 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  om  ~<_  A )
19 domtr 8009 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  B )  ->  om  ~<_  B )
2018, 19sylan 488 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  om  ~<_  B )
21 infn0 8222 . . . . . . . 8  |-  ( om  ~<_  A  ->  A  =/=  (/) )
2221ad3antlr 767 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  =/=  (/) )
23 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  ~<_  B )
24 infxpabs 9034 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( A  =/=  (/)  /\  A  ~<_  B ) )  -> 
( B  X.  A
)  ~~  B )
2517, 20, 22, 23, 24syl22anc 1327 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  B )
26 uncom 3757 . . . . . . . 8  |-  ( A  u.  B )  =  ( B  u.  A
)
27 infunabs 9029 . . . . . . . . 9  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
2817, 20, 23, 27syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
2926, 28syl5eqbr 4688 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  u.  B )  ~~  B )
3029ensymd 8007 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  ~~  ( A  u.  B
) )
31 entr 8008 . . . . . 6  |-  ( ( ( B  X.  A
)  ~~  B  /\  B  ~~  ( A  u.  B ) )  -> 
( B  X.  A
)  ~~  ( A  u.  B ) )
3225, 30, 31syl2anc 693 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  ( A  u.  B
) )
33 entr 8008 . . . . 5  |-  ( ( ( A  X.  B
)  ~~  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  u.  B
) )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3416, 32, 33syl2anc 693 . . . 4  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3534ex 450 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
3613, 35sylbird 250 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( -.  B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
3711, 36pm2.61d 170 1  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794    u. cun 3572   (/)c0 3915   class class class wbr 4653    X. cxp 5112   dom cdm 5114   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  alephmul  9400
  Copyright terms: Public domain W3C validator