MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephmul Structured version   Visualization version   Unicode version

Theorem alephmul 9400
Description: The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephmul  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  X.  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )

Proof of Theorem alephmul
StepHypRef Expression
1 alephgeom 8905 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
2 fvex 6201 . . . . 5  |-  ( aleph `  A )  e.  _V
3 ssdomg 8001 . . . . 5  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
42, 3ax-mp 5 . . . 4  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
51, 4sylbi 207 . . 3  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
6 alephon 8892 . . . 4  |-  ( aleph `  A )  e.  On
7 onenon 8775 . . . 4  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
86, 7ax-mp 5 . . 3  |-  ( aleph `  A )  e.  dom  card
95, 8jctil 560 . 2  |-  ( A  e.  On  ->  (
( aleph `  A )  e.  dom  card  /\  om  ~<_  ( aleph `  A ) ) )
10 alephgeom 8905 . . . 4  |-  ( B  e.  On  <->  om  C_  ( aleph `  B ) )
11 fvex 6201 . . . . . 6  |-  ( aleph `  B )  e.  _V
12 ssdomg 8001 . . . . . 6  |-  ( (
aleph `  B )  e. 
_V  ->  ( om  C_  ( aleph `  B )  ->  om 
~<_  ( aleph `  B )
) )
1311, 12ax-mp 5 . . . . 5  |-  ( om  C_  ( aleph `  B )  ->  om  ~<_  ( aleph `  B
) )
14 infn0 8222 . . . . 5  |-  ( om  ~<_  ( aleph `  B )  ->  ( aleph `  B )  =/=  (/) )
1513, 14syl 17 . . . 4  |-  ( om  C_  ( aleph `  B )  ->  ( aleph `  B )  =/=  (/) )
1610, 15sylbi 207 . . 3  |-  ( B  e.  On  ->  ( aleph `  B )  =/=  (/) )
17 alephon 8892 . . . 4  |-  ( aleph `  B )  e.  On
18 onenon 8775 . . . 4  |-  ( (
aleph `  B )  e.  On  ->  ( aleph `  B )  e.  dom  card )
1917, 18ax-mp 5 . . 3  |-  ( aleph `  B )  e.  dom  card
2016, 19jctil 560 . 2  |-  ( B  e.  On  ->  (
( aleph `  B )  e.  dom  card  /\  ( aleph `  B )  =/=  (/) ) )
21 infxp 9037 . 2  |-  ( ( ( ( aleph `  A
)  e.  dom  card  /\ 
om  ~<_  ( aleph `  A
) )  /\  (
( aleph `  B )  e.  dom  card  /\  ( aleph `  B )  =/=  (/) ) )  ->  (
( aleph `  A )  X.  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
) )
229, 20, 21syl2an 494 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  X.  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Oncon0 5723   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cda 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator