MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvsp Structured version   Visualization version   Unicode version

Theorem iscvsp 22928
Description: The predicate "is a subcomplex vector space." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
iscvsp.t  |-  .x.  =  ( .s `  W )
iscvsp.a  |-  .+  =  ( +g  `  W )
iscvsp.v  |-  V  =  ( Base `  W
)
iscvsp.s  |-  S  =  (Scalar `  W )
iscvsp.k  |-  K  =  ( Base `  S
)
Assertion
Ref Expression
iscvsp  |-  ( W  e. CVec 
<->  ( ( W  e. 
Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K
) )  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) )
Distinct variable groups:    x, K, y, z    x, S, y, z    x, V, y, z    x, W, y, z    x,  .+ , y, z   
x,  .x. , y, z

Proof of Theorem iscvsp
StepHypRef Expression
1 iscvs 22927 . 2  |-  ( W  e. CVec 
<->  ( W  e. CMod  /\  (Scalar `  W )  e.  DivRing ) )
2 iscvsp.t . . . . 5  |-  .x.  =  ( .s `  W )
3 iscvsp.a . . . . 5  |-  .+  =  ( +g  `  W )
4 iscvsp.v . . . . 5  |-  V  =  ( Base `  W
)
5 iscvsp.s . . . . 5  |-  S  =  (Scalar `  W )
6 iscvsp.k . . . . 5  |-  K  =  ( Base `  S
)
72, 3, 4, 5, 6isclmp 22897 . . . 4  |-  ( W  e. CMod 
<->  ( ( W  e. 
Grp  /\  S  =  (flds  K
)  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) )
87anbi2ci 732 . . 3  |-  ( ( W  e. CMod  /\  (Scalar `  W )  e.  DivRing )  <-> 
( (Scalar `  W
)  e.  DivRing  /\  (
( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) ) )
9 anass 681 . . 3  |-  ( ( ( (Scalar `  W
)  e.  DivRing  /\  ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )  /\  A. x  e.  V  ( ( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) )  <->  ( (Scalar `  W )  e.  DivRing  /\  ( ( W  e. 
Grp  /\  S  =  (flds  K
)  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) ) )
10 3anan12 1051 . . . . . . 7  |-  ( ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) )  <->  ( S  =  (flds  K )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) )
1110anbi2i 730 . . . . . 6  |-  ( ( (Scalar `  W )  e.  DivRing  /\  ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )  <->  ( (Scalar `  W )  e.  DivRing  /\  ( S  =  (flds  K )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) ) )
12 anass 681 . . . . . 6  |-  ( ( ( (Scalar `  W
)  e.  DivRing  /\  S  =  (flds  K ) )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) )  <->  ( (Scalar `  W )  e.  DivRing  /\  ( S  =  (flds  K )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) ) )
135eqcomi 2631 . . . . . . . . 9  |-  (Scalar `  W )  =  S
1413eleq1i 2692 . . . . . . . 8  |-  ( (Scalar `  W )  e.  DivRing  <->  S  e.  DivRing )
1514anbi1i 731 . . . . . . 7  |-  ( ( (Scalar `  W )  e.  DivRing  /\  S  =  (flds  K
) )  <->  ( S  e.  DivRing  /\  S  =  (flds  K
) ) )
1615anbi1i 731 . . . . . 6  |-  ( ( ( (Scalar `  W
)  e.  DivRing  /\  S  =  (flds  K ) )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) )  <->  ( ( S  e.  DivRing  /\  S  =  (flds  K ) )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) )
1711, 12, 163bitr2i 288 . . . . 5  |-  ( ( (Scalar `  W )  e.  DivRing  /\  ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )  <->  ( ( S  e.  DivRing  /\  S  =  (flds  K ) )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) )
18 3anan12 1051 . . . . 5  |-  ( ( W  e.  Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K ) )  /\  K  e.  (SubRing ` fld ) )  <->  ( ( S  e.  DivRing  /\  S  =  (flds  K ) )  /\  ( W  e.  Grp  /\  K  e.  (SubRing ` fld ) ) ) )
1917, 18bitr4i 267 . . . 4  |-  ( ( (Scalar `  W )  e.  DivRing  /\  ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )  <->  ( W  e.  Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K
) )  /\  K  e.  (SubRing ` fld ) ) )
2019anbi1i 731 . . 3  |-  ( ( ( (Scalar `  W
)  e.  DivRing  /\  ( W  e.  Grp  /\  S  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )  /\  A. x  e.  V  ( ( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) )  <->  ( ( W  e.  Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K ) )  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) )
218, 9, 203bitr2i 288 . 2  |-  ( ( W  e. CMod  /\  (Scalar `  W )  e.  DivRing )  <-> 
( ( W  e. 
Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K
) )  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) )
221, 21bitri 264 1  |-  ( W  e. CVec 
<->  ( ( W  e. 
Grp  /\  ( S  e.  DivRing  /\  S  =  (flds  K
) )  /\  K  e.  (SubRing ` fld ) )  /\  A. x  e.  V  (
( 1  .x.  x
)  =  x  /\  A. y  e.  K  ( ( y  .x.  x
)  e.  V  /\  A. z  e.  V  ( y  .x.  ( x 
.+  z ) )  =  ( ( y 
.x.  x )  .+  ( y  .x.  z
) )  /\  A. z  e.  K  (
( ( z  +  y )  .x.  x
)  =  ( ( z  .x.  x ) 
.+  ( y  .x.  x ) )  /\  ( ( z  x.  y )  .x.  x
)  =  ( z 
.x.  ( y  .x.  x ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    x. cmul 9941   Basecbs 15857   ↾s cress 15858   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422   DivRingcdr 18747  SubRingcsubrg 18776  ℂfldccnfld 19746  CModcclm 22862  CVecccvs 22923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lvec 19103  df-cnfld 19747  df-clm 22863  df-cvs 22924
This theorem is referenced by:  iscvsi  22929
  Copyright terms: Public domain W3C validator