MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   Unicode version

Theorem iseqlg 25747
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p  |-  P  =  ( Base `  G
)
iseqlg.m  |-  .-  =  ( dist `  G )
iseqlg.i  |-  I  =  (Itv `  G )
iseqlg.l  |-  L  =  (LineG `  G )
iseqlg.g  |-  ( ph  ->  G  e. TarskiG )
iseqlg.a  |-  ( ph  ->  A  e.  P )
iseqlg.b  |-  ( ph  ->  B  e.  P )
iseqlg.c  |-  ( ph  ->  C  e.  P )
Assertion
Ref Expression
iseqlg  |-  ( ph  ->  ( <" A B C ">  e.  (eqltrG `  G )  <->  <" A B C "> (cgrG `  G ) <" B C A "> )
)

Proof of Theorem iseqlg
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
2 elex 3212 . . . 4  |-  ( G  e. TarskiG  ->  G  e.  _V )
3 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 iseqlg.p . . . . . . . 8  |-  P  =  ( Base `  G
)
53, 4syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  P )
65oveq1d 6665 . . . . . 6  |-  ( g  =  G  ->  (
( Base `  g )  ^m  ( 0..^ 3 ) )  =  ( P  ^m  ( 0..^ 3 ) ) )
7 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (cgrG `  g )  =  (cgrG `  G ) )
87breqd 4664 . . . . . 6  |-  ( g  =  G  ->  (
x (cgrG `  g
) <" ( x `
 1 ) ( x `  2 ) ( x `  0
) ">  <->  x (cgrG `  G ) <" (
x `  1 )
( x `  2
) ( x ` 
0 ) "> ) )
96, 8rabeqbidv 3195 . . . . 5  |-  ( g  =  G  ->  { x  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  |  x (cgrG `  g
) <" ( x `
 1 ) ( x `  2 ) ( x `  0
) "> }  =  { x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G ) <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) "> } )
10 df-eqlg 25746 . . . . 5  |- eqltrG  =  ( g  e.  _V  |->  { x  e.  ( (
Base `  g )  ^m  ( 0..^ 3 ) )  |  x (cgrG `  g ) <" (
x `  1 )
( x `  2
) ( x ` 
0 ) "> } )
11 ovex 6678 . . . . . 6  |-  ( P  ^m  ( 0..^ 3 ) )  e.  _V
1211rabex 4813 . . . . 5  |-  { x  e.  ( P  ^m  (
0..^ 3 ) )  |  x (cgrG `  G ) <" (
x `  1 )
( x `  2
) ( x ` 
0 ) "> }  e.  _V
139, 10, 12fvmpt 6282 . . . 4  |-  ( G  e.  _V  ->  (eqltrG `  G )  =  {
x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G ) <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) "> } )
141, 2, 133syl 18 . . 3  |-  ( ph  ->  (eqltrG `  G )  =  { x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G
) <" ( x `
 1 ) ( x `  2 ) ( x `  0
) "> } )
1514eleq2d 2687 . 2  |-  ( ph  ->  ( <" A B C ">  e.  (eqltrG `  G )  <->  <" A B C ">  e.  { x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G ) <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) "> } ) )
16 id 22 . . . . 5  |-  ( x  =  <" A B C ">  ->  x  =  <" A B C "> )
17 fveq1 6190 . . . . . 6  |-  ( x  =  <" A B C ">  ->  ( x `  1 )  =  ( <" A B C "> `  1
) )
18 fveq1 6190 . . . . . 6  |-  ( x  =  <" A B C ">  ->  ( x `  2 )  =  ( <" A B C "> `  2
) )
19 fveq1 6190 . . . . . 6  |-  ( x  =  <" A B C ">  ->  ( x `  0 )  =  ( <" A B C "> `  0
) )
2017, 18, 19s3eqd 13609 . . . . 5  |-  ( x  =  <" A B C ">  ->  <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) ">  =  <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )
2116, 20breq12d 4666 . . . 4  |-  ( x  =  <" A B C ">  ->  ( x (cgrG `  G
) <" ( x `
 1 ) ( x `  2 ) ( x `  0
) ">  <->  <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )
)
2221elrab 3363 . . 3  |-  ( <" A B C ">  e.  {
x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G ) <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) "> }  <->  ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )
)
2322a1i 11 . 2  |-  ( ph  ->  ( <" A B C ">  e.  { x  e.  ( P  ^m  ( 0..^ 3 ) )  |  x (cgrG `  G ) <" ( x ` 
1 ) ( x `
 2 ) ( x `  0 ) "> }  <->  ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )
) )
24 iseqlg.a . . . . . . 7  |-  ( ph  ->  A  e.  P )
25 iseqlg.b . . . . . . 7  |-  ( ph  ->  B  e.  P )
26 iseqlg.c . . . . . . 7  |-  ( ph  ->  C  e.  P )
2724, 25, 26s3cld 13617 . . . . . 6  |-  ( ph  ->  <" A B C ">  e. Word  P )
28 s3len 13639 . . . . . . 7  |-  ( # `  <" A B C "> )  =  3
2928a1i 11 . . . . . 6  |-  ( ph  ->  ( # `  <" A B C "> )  =  3
)
3027, 29jca 554 . . . . 5  |-  ( ph  ->  ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
) )
31 fvex 6201 . . . . . . 7  |-  ( Base `  G )  e.  _V
324, 31eqeltri 2697 . . . . . 6  |-  P  e. 
_V
33 3nn0 11310 . . . . . 6  |-  3  e.  NN0
34 wrdmap 13336 . . . . . 6  |-  ( ( P  e.  _V  /\  3  e.  NN0 )  -> 
( ( <" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) ) )
3532, 33, 34mp2an 708 . . . . 5  |-  ( (
<" A B C ">  e. Word  P  /\  ( # `  <" A B C "> )  =  3
)  <->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
3630, 35sylib 208 . . . 4  |-  ( ph  ->  <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) ) )
3736biantrurd 529 . . 3  |-  ( ph  ->  ( <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) ">  <->  ( <" A B C ">  e.  ( P  ^m  ( 0..^ 3 ) )  /\  <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )
) )
38 s3fv1 13637 . . . . . 6  |-  ( B  e.  P  ->  ( <" A B C "> `  1
)  =  B )
3925, 38syl 17 . . . . 5  |-  ( ph  ->  ( <" A B C "> `  1
)  =  B )
40 s3fv2 13638 . . . . . 6  |-  ( C  e.  P  ->  ( <" A B C "> `  2
)  =  C )
4126, 40syl 17 . . . . 5  |-  ( ph  ->  ( <" A B C "> `  2
)  =  C )
42 s3fv0 13636 . . . . . 6  |-  ( A  e.  P  ->  ( <" A B C "> `  0
)  =  A )
4324, 42syl 17 . . . . 5  |-  ( ph  ->  ( <" A B C "> `  0
)  =  A )
4439, 41, 43s3eqd 13609 . . . 4  |-  ( ph  ->  <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) ">  =  <" B C A "> )
4544breq2d 4665 . . 3  |-  ( ph  ->  ( <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) ">  <->  <" A B C "> (cgrG `  G ) <" B C A "> )
)
4637, 45bitr3d 270 . 2  |-  ( ph  ->  ( ( <" A B C ">  e.  ( P  ^m  (
0..^ 3 ) )  /\  <" A B C "> (cgrG `  G ) <" ( <" A B C "> `  1
) ( <" A B C "> `  2
) ( <" A B C "> `  0
) "> )  <->  <" A B C "> (cgrG `  G ) <" B C A "> )
)
4715, 23, 463bitrd 294 1  |-  ( ph  ->  ( <" A B C ">  e.  (eqltrG `  G )  <->  <" A B C "> (cgrG `  G ) <" B C A "> )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  eqltrGceqlg 25745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-eqlg 25746
This theorem is referenced by:  iseqlgd  25748
  Copyright terms: Public domain W3C validator