![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version Unicode version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11186 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 11300 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-1cn 9994 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 |
This theorem is referenced by: 7p4e11 11605 7p4e11OLD 11606 7p7e14 11609 8p4e12 11614 8p6e14 11616 9p4e13 11622 9p5e14 11623 4t4e16 11633 5t4e20 11637 5t4e20OLD 11638 6t4e24 11643 6t6e36 11646 6t6e36OLD 11647 7t4e28 11650 7t6e42 11652 8t4e32 11656 8t5e40 11657 8t5e40OLD 11658 9t4e36 11665 9t5e45 11666 9t7e63 11668 9t8e72 11669 fz0to3un2pr 12441 4fvwrd4 12459 fldiv4p1lem1div2 12636 expnass 12970 binom3 12985 fac4 13068 4bc2eq6 13116 hash3tr 13272 bpoly3 14789 bpoly4 14790 fsumcube 14791 ef4p 14843 efi4p 14867 resin4p 14868 recos4p 14869 ef01bndlem 14914 sin01bnd 14915 sin01gt0 14920 2exp6 15795 2exp8 15796 2exp16 15797 3exp3 15798 7prm 15817 11prm 15822 13prm 15823 17prm 15824 23prm 15826 prmlem2 15827 37prm 15828 43prm 15829 83prm 15830 139prm 15831 163prm 15832 317prm 15833 631prm 15834 1259lem1 15838 1259lem2 15839 1259lem3 15840 1259lem4 15841 1259lem5 15842 1259prm 15843 2503lem1 15844 2503lem2 15845 2503lem3 15846 2503prm 15847 4001lem1 15848 4001lem2 15849 4001lem3 15850 4001lem4 15851 4001prm 15852 cnfldfun 19758 ressunif 22066 tuslem 22071 tangtx 24257 1cubrlem 24568 dcubic1lem 24570 dcubic2 24571 dcubic1 24572 dcubic 24573 mcubic 24574 cubic2 24575 cubic 24576 binom4 24577 dquartlem2 24579 quart1cl 24581 quart1lem 24582 quart1 24583 quartlem1 24584 quartlem2 24585 quart 24588 log2ublem1 24673 log2ublem3 24675 log2ub 24676 log2le1 24677 birthday 24681 ppiublem2 24928 bclbnd 25005 bpos1 25008 bposlem8 25016 gausslemma2dlem4 25094 2lgslem3b 25122 2lgslem3d 25124 pntlemd 25283 pntlema 25285 pntlemb 25286 pntlemf 25294 pntlemo 25296 pntlem3 25298 tgcgr4 25426 iscgra 25701 isinag 25729 isleag 25733 iseqlg 25747 usgrexmplef 26151 upgr3v3e3cycl 27040 upgr4cycl4dv4e 27045 konigsbergiedgw 27108 konigsbergiedgwOLD 27109 konigsberglem1 27114 konigsberglem2 27115 konigsberglem3 27116 konigsberglem4 27117 ex-prmo 27316 threehalves 29623 circlemethhgt 30721 hgt750lemd 30726 hgt750lem 30729 hgt750lem2 30730 hgt750lemb 30734 hgt750lema 30735 hgt750leme 30736 tgoldbachgtde 30738 tgoldbachgtda 30739 tgoldbachgt 30741 kur14lem8 31195 jm2.23 37563 jm2.20nn 37564 rmydioph 37581 rmxdioph 37583 expdiophlem2 37589 expdioph 37590 amgm3d 38502 lhe4.4ex1a 38528 fmtno3 41463 fmtno4 41464 fmtno5lem1 41465 fmtno5lem2 41466 fmtno5lem3 41467 fmtno5lem4 41468 fmtno5 41469 257prm 41473 fmtnoprmfac2lem1 41478 fmtno4prmfac 41484 fmtno4prmfac193 41485 fmtno4nprmfac193 41486 fmtno5faclem2 41492 2exp5 41507 139prmALT 41511 31prm 41512 m5prm 41513 127prm 41515 2exp11 41517 m11nprm 41518 mod42tp1mod8 41519 tgoldbachlt 41704 tgoldbach 41705 tgoldbachltOLD 41710 tgoldbachOLD 41712 zlmodzxzldeplem1 42289 |
Copyright terms: Public domain | W3C validator |