MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Structured version   Visualization version   Unicode version

Theorem lactghmga 17824
Description: The converse of galactghm 17823. The uncurrying of a homomorphism into  ( SymGrp `  Y
) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x  |-  X  =  ( Base `  G
)
lactghmga.h  |-  H  =  ( SymGrp `  Y )
lactghmga.f  |-  .(+)  =  ( x  e.  X , 
y  e.  Y  |->  ( ( F `  x
) `  y )
)
Assertion
Ref Expression
lactghmga  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  e.  ( G  GrpAct  Y ) )
Distinct variable groups:    x, y, F    x, G, y    x, H, y    x, X, y   
x, Y, y
Allowed substitution hints:    .(+) ( x, y)

Proof of Theorem lactghmga
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 17662 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  G  e.  Grp )
2 ghmgrp2 17663 . . . 4  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
3 grpn0 17454 . . . 4  |-  ( H  e.  Grp  ->  H  =/=  (/) )
4 lactghmga.h . . . . . 6  |-  H  =  ( SymGrp `  Y )
5 fvprc 6185 . . . . . 6  |-  ( -.  Y  e.  _V  ->  (
SymGrp `  Y )  =  (/) )
64, 5syl5eq 2668 . . . . 5  |-  ( -.  Y  e.  _V  ->  H  =  (/) )
76necon1ai 2821 . . . 4  |-  ( H  =/=  (/)  ->  Y  e.  _V )
82, 3, 73syl 18 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  Y  e.  _V )
91, 8jca 554 . 2  |-  ( F  e.  ( G  GrpHom  H )  ->  ( G  e.  Grp  /\  Y  e. 
_V ) )
10 lactghmga.x . . . . . . . . . . 11  |-  X  =  ( Base `  G
)
11 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
1210, 11ghmf 17664 . . . . . . . . . 10  |-  ( F  e.  ( G  GrpHom  H )  ->  F : X
--> ( Base `  H
) )
1312ffvelrnda 6359 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x )  e.  ( Base `  H
) )
148adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  Y  e.  _V )
154, 11elsymgbas 17802 . . . . . . . . . 10  |-  ( Y  e.  _V  ->  (
( F `  x
)  e.  ( Base `  H )  <->  ( F `  x ) : Y -1-1-onto-> Y
) )
1614, 15syl 17 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  (
( F `  x
)  e.  ( Base `  H )  <->  ( F `  x ) : Y -1-1-onto-> Y
) )
1713, 16mpbid 222 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x ) : Y -1-1-onto-> Y )
18 f1of 6137 . . . . . . . 8  |-  ( ( F `  x ) : Y -1-1-onto-> Y  ->  ( F `  x ) : Y --> Y )
1917, 18syl 17 . . . . . . 7  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x ) : Y --> Y )
2019ffvelrnda 6359 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  x  e.  X )  /\  y  e.  Y
)  ->  ( ( F `  x ) `  y )  e.  Y
)
2120ralrimiva 2966 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  A. y  e.  Y  ( ( F `  x ) `  y )  e.  Y
)
2221ralrimiva 2966 . . . 4  |-  ( F  e.  ( G  GrpHom  H )  ->  A. x  e.  X  A. y  e.  Y  ( ( F `  x ) `  y )  e.  Y
)
23 lactghmga.f . . . . 5  |-  .(+)  =  ( x  e.  X , 
y  e.  Y  |->  ( ( F `  x
) `  y )
)
2423fmpt2 7237 . . . 4  |-  ( A. x  e.  X  A. y  e.  Y  (
( F `  x
) `  y )  e.  Y  <->  .(+)  : ( X  X.  Y ) --> Y )
2522, 24sylib 208 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  : ( X  X.  Y ) --> Y )
26 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2710, 26grpidcl 17450 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
281, 27syl 17 . . . . . . 7  |-  ( F  e.  ( G  GrpHom  H )  ->  ( 0g `  G )  e.  X
)
29 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( 0g `  G )  ->  ( F `  x )  =  ( F `  ( 0g `  G ) ) )
3029fveq1d 6193 . . . . . . . 8  |-  ( x  =  ( 0g `  G )  ->  (
( F `  x
) `  y )  =  ( ( F `
 ( 0g `  G ) ) `  y ) )
31 fveq2 6191 . . . . . . . 8  |-  ( y  =  z  ->  (
( F `  ( 0g `  G ) ) `
 y )  =  ( ( F `  ( 0g `  G ) ) `  z ) )
32 fvex 6201 . . . . . . . 8  |-  ( ( F `  ( 0g
`  G ) ) `
 z )  e. 
_V
3330, 31, 23, 32ovmpt2 6796 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  z  e.  Y )  ->  ( ( 0g `  G )  .(+)  z )  =  ( ( F `
 ( 0g `  G ) ) `  z ) )
3428, 33sylan 488 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  ( ( F `  ( 0g `  G ) ) `  z ) )
35 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  H )  =  ( 0g `  H
)
3626, 35ghmid 17666 . . . . . . . . 9  |-  ( F  e.  ( G  GrpHom  H )  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
3736adantr 481 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H
) )
388adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  Y  e.  _V )
394symgid 17821 . . . . . . . . 9  |-  ( Y  e.  _V  ->  (  _I  |`  Y )  =  ( 0g `  H
) )
4038, 39syl 17 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (  _I  |`  Y )  =  ( 0g `  H
) )
4137, 40eqtr4d 2659 . . . . . . 7  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  ( F `  ( 0g `  G ) )  =  (  _I  |`  Y ) )
4241fveq1d 6193 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( F `  ( 0g `  G ) ) `
 z )  =  ( (  _I  |`  Y ) `
 z ) )
43 fvresi 6439 . . . . . . 7  |-  ( z  e.  Y  ->  (
(  _I  |`  Y ) `
 z )  =  z )
4443adantl 482 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
(  _I  |`  Y ) `
 z )  =  z )
4534, 42, 443eqtrd 2660 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  z )
4612ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  F : X --> ( Base `  H
) )
47 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  v  e.  X )
4846, 47ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v )  e.  ( Base `  H
) )
498ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  Y  e.  _V )
504, 11elsymgbas 17802 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  (
( F `  v
)  e.  ( Base `  H )  <->  ( F `  v ) : Y -1-1-onto-> Y
) )
5149, 50syl 17 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  v
)  e.  ( Base `  H )  <->  ( F `  v ) : Y -1-1-onto-> Y
) )
5248, 51mpbid 222 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v ) : Y -1-1-onto-> Y )
53 f1of 6137 . . . . . . . . . 10  |-  ( ( F `  v ) : Y -1-1-onto-> Y  ->  ( F `  v ) : Y --> Y )
5452, 53syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v ) : Y --> Y )
55 simplr 792 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  z  e.  Y )
56 fvco3 6275 . . . . . . . . 9  |-  ( ( ( F `  v
) : Y --> Y  /\  z  e.  Y )  ->  ( ( ( F `
 u )  o.  ( F `  v
) ) `  z
)  =  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) ) )
5754, 55, 56syl2anc 693 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( ( F `  u )  o.  ( F `  v )
) `  z )  =  ( ( F `
 u ) `  ( ( F `  v ) `  z
) ) )
58 simpll 790 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  F  e.  ( G  GrpHom  H ) )
59 simprl 794 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  u  e.  X )
60 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
61 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  H )  =  ( +g  `  H )
6210, 60, 61ghmlin 17665 . . . . . . . . . . 11  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  u  e.  X  /\  v  e.  X )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u ) ( +g  `  H ) ( F `
 v ) ) )
6358, 59, 47, 62syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u ) ( +g  `  H ) ( F `
 v ) ) )
6446, 59ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  u )  e.  ( Base `  H
) )
654, 11, 61symgov 17810 . . . . . . . . . . 11  |-  ( ( ( F `  u
)  e.  ( Base `  H )  /\  ( F `  v )  e.  ( Base `  H
) )  ->  (
( F `  u
) ( +g  `  H
) ( F `  v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
6664, 48, 65syl2anc 693 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  u
) ( +g  `  H
) ( F `  v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
6763, 66eqtrd 2656 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
6867fveq1d 6193 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 z )  =  ( ( ( F `
 u )  o.  ( F `  v
) ) `  z
) )
6954, 55ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  v
) `  z )  e.  Y )
70 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
7170fveq1d 6193 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( F `  x
) `  y )  =  ( ( F `
 u ) `  y ) )
72 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  ( ( F `
 v ) `  z )  ->  (
( F `  u
) `  y )  =  ( ( F `
 u ) `  ( ( F `  v ) `  z
) ) )
73 fvex 6201 . . . . . . . . . 10  |-  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) )  e. 
_V
7471, 72, 23, 73ovmpt2 6796 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( ( F `  v ) `  z
)  e.  Y )  ->  ( u  .(+)  ( ( F `  v
) `  z )
)  =  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) ) )
7559, 69, 74syl2anc 693 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u  .(+)  ( ( F `
 v ) `  z ) )  =  ( ( F `  u ) `  (
( F `  v
) `  z )
) )
7657, 68, 753eqtr4d 2666 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 z )  =  ( u  .(+)  ( ( F `  v ) `
 z ) ) )
771ad2antrr 762 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  G  e.  Grp )
7810, 60grpcl 17430 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  v  e.  X )  ->  ( u ( +g  `  G ) v )  e.  X )
7977, 59, 47, 78syl3anc 1326 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u ( +g  `  G
) v )  e.  X )
80 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  ( u ( +g  `  G ) v )  ->  ( F `  x )  =  ( F `  ( u ( +g  `  G ) v ) ) )
8180fveq1d 6193 . . . . . . . . 9  |-  ( x  =  ( u ( +g  `  G ) v )  ->  (
( F `  x
) `  y )  =  ( ( F `
 ( u ( +g  `  G ) v ) ) `  y ) )
82 fveq2 6191 . . . . . . . . 9  |-  ( y  =  z  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 y )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
83 fvex 6201 . . . . . . . . 9  |-  ( ( F `  ( u ( +g  `  G
) v ) ) `
 z )  e. 
_V
8481, 82, 23, 83ovmpt2 6796 . . . . . . . 8  |-  ( ( ( u ( +g  `  G ) v )  e.  X  /\  z  e.  Y )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
8579, 55, 84syl2anc 693 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
86 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  v  ->  ( F `  x )  =  ( F `  v ) )
8786fveq1d 6193 . . . . . . . . . 10  |-  ( x  =  v  ->  (
( F `  x
) `  y )  =  ( ( F `
 v ) `  y ) )
88 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( F `  v
) `  y )  =  ( ( F `
 v ) `  z ) )
89 fvex 6201 . . . . . . . . . 10  |-  ( ( F `  v ) `
 z )  e. 
_V
9087, 88, 23, 89ovmpt2 6796 . . . . . . . . 9  |-  ( ( v  e.  X  /\  z  e.  Y )  ->  ( v  .(+)  z )  =  ( ( F `
 v ) `  z ) )
9147, 55, 90syl2anc 693 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
v  .(+)  z )  =  ( ( F `  v ) `  z
) )
9291oveq2d 6666 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u  .(+)  ( v  .(+)  z ) )  =  ( u  .(+)  ( ( F `  v ) `  z ) ) )
9376, 85, 923eqtr4d 2666 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) )
9493ralrimivva 2971 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  A. u  e.  X  A. v  e.  X  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) )
9545, 94jca 554 . . . 4  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) )
9695ralrimiva 2966 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  A. z  e.  Y  ( (
( 0g `  G
)  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) ) )
9725, 96jca 554 . 2  |-  ( F  e.  ( G  GrpHom  H )  ->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. z  e.  Y  (
( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) ) )
9810, 60, 26isga 17724 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. z  e.  Y  ( ( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) ) ) )
999, 97, 98sylanbrc 698 1  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  e.  ( G  GrpAct  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915    _I cid 5023    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422    GrpHom cghm 17657    GrpAct cga 17722   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-ga 17723  df-symg 17798
This theorem is referenced by:  symgga  17826
  Copyright terms: Public domain W3C validator