Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlk Structured version   Visualization version   Unicode version

Theorem isupwlk 41717
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v  |-  V  =  (Vtx `  G )
upwlksfval.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
isupwlk  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (UPWalks `  G
) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
Distinct variable groups:    k, G    k, F    P, k
Allowed substitution hints:    U( k)    I(
k)    V( k)    W( k)    Z( k)

Proof of Theorem isupwlk
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( F (UPWalks `  G ) P 
<-> 
<. F ,  P >.  e.  (UPWalks `  G )
)
2 upwlksfval.v . . . . . 6  |-  V  =  (Vtx `  G )
3 upwlksfval.i . . . . . 6  |-  I  =  (iEdg `  G )
42, 3upwlksfval 41716 . . . . 5  |-  ( G  e.  W  ->  (UPWalks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) ) ( I `  ( f `
 k ) )  =  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) } ) } )
543ad2ant1 1082 . . . 4  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  (UPWalks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `
 f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) ) ( I `  ( f `
 k ) )  =  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) } ) } )
65eleq2d 2687 . . 3  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  (UPWalks `  G
)  <->  <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) ) ( I `
 ( f `  k ) )  =  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) } ) } ) )
71, 6syl5bb 272 . 2  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (UPWalks `  G
) P  <->  <. F ,  P >.  e.  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) ) ( I `
 ( f `  k ) )  =  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) } ) } ) )
8 eleq1 2689 . . . . . 6  |-  ( f  =  F  ->  (
f  e. Word  dom  I  <->  F  e. Word  dom  I ) )
98adantr 481 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( f  e. Word  dom  I 
<->  F  e. Word  dom  I
) )
10 simpr 477 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  p  =  P )
11 fveq2 6191 . . . . . . . 8  |-  ( f  =  F  ->  ( # `
 f )  =  ( # `  F
) )
1211oveq2d 6666 . . . . . . 7  |-  ( f  =  F  ->  (
0 ... ( # `  f
) )  =  ( 0 ... ( # `  F ) ) )
1312adantr 481 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  ( 0 ... ( # `
 f ) )  =  ( 0 ... ( # `  F
) ) )
1410, 13feq12d 6033 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( p : ( 0 ... ( # `  f ) ) --> V  <-> 
P : ( 0 ... ( # `  F
) ) --> V ) )
1511oveq2d 6666 . . . . . . 7  |-  ( f  =  F  ->  (
0..^ ( # `  f
) )  =  ( 0..^ ( # `  F
) ) )
1615adantr 481 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  ( 0..^ ( # `  f ) )  =  ( 0..^ ( # `  F ) ) )
17 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
1817fveq2d 6195 . . . . . . 7  |-  ( f  =  F  ->  (
I `  ( f `  k ) )  =  ( I `  ( F `  k )
) )
19 fveq1 6190 . . . . . . . 8  |-  ( p  =  P  ->  (
p `  k )  =  ( P `  k ) )
20 fveq1 6190 . . . . . . . 8  |-  ( p  =  P  ->  (
p `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) )
2119, 20preq12d 4276 . . . . . . 7  |-  ( p  =  P  ->  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2218, 21eqeqan12d 2638 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( I `  ( f `  k
) )  =  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) }  <-> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
2316, 22raleqbidv 3152 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( A. k  e.  ( 0..^ ( # `  f ) ) ( I `  ( f `
 k ) )  =  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  <->  A. k  e.  ( 0..^ ( # `  F ) ) ( I `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) )
249, 14, 233anbi123d 1399 . . . 4  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `
 f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) ) ( I `  ( f `
 k ) )  =  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) } )  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2524opelopabga 4988 . . 3  |-  ( ( F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) ) ( I `
 ( f `  k ) )  =  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) } ) }  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
26253adant1 1079 . 2  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) ) ( I `
 ( f `  k ) )  =  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) } ) }  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
277, 26bitrd 268 1  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (UPWalks `  G
) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   <.cop 4183   class class class wbr 4653   {copab 4712   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  UPWalkscupwlks 41714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-upwlks 41715
This theorem is referenced by:  isupwlkg  41718  upwlkwlk  41720  upgrwlkupwlk  41721  upgrisupwlkALT  41723
  Copyright terms: Public domain W3C validator