Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrwlkupwlk Structured version   Visualization version   Unicode version

Theorem upgrwlkupwlk 41721
Description: In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.)
Assertion
Ref Expression
upgrwlkupwlk  |-  ( ( G  e. UPGraph  /\  F (Walks `  G ) P )  ->  F (UPWalks `  G
) P )

Proof of Theorem upgrwlkupwlk
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 wlkv 26508 . . 3  |-  ( F (Walks `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
2 eqid 2622 . . . . . . . . 9  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . . . . . . 9  |-  (iEdg `  G )  =  (iEdg `  G )
42, 3iswlk 26506 . . . . . . . 8  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) ) ) )
5 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) ) )  ->  F  e. Word  dom  (iEdg `  G ) )
6 simpr2 1068 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) ) )  ->  P : ( 0 ... ( # `  F ) ) --> (Vtx
`  G ) )
7 df-ifp 1013 . . . . . . . . . . . . . . . . 17  |-  (if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k )
) )  <->  ( (
( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } )  \/  ( -.  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k
) ) ) ) )
8 dfsn2 4190 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { ( P `  k ) }  =  { ( P `  k ) ,  ( P `  k ) }
9 preq2 4269 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  { ( P `  k ) ,  ( P `  k ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
108, 9syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  { ( P `  k ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1110eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  (
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) }  <->  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
1211biimpa 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1312a1d 25 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } )  -> 
( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
14 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  ->  G  e. UPGraph  )
15 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  ->  F  e. Word  dom  (iEdg `  G ) )
16 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (Edg `  G )  =  (Edg
`  G )
173, 16upgredginwlk 26532 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e. UPGraph  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( k  e.  ( 0..^ ( # `  F ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  e.  (Edg `  G )
) )
1814, 15, 17syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  ->  ( k  e.  ( 0..^ ( # `  F ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  e.  (Edg `  G )
) )
1918imp 445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  e.  (Edg `  G )
)
20 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  ->  G  e. UPGraph  )
2120adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  ->  G  e. UPGraph  )
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )
)  /\  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V )  /\  G  e. UPGraph  ) )  /\  k  e.  ( 0..^ ( # `  F ) ) )  /\  ( (iEdg `  G ) `  ( F `  k )
)  e.  (Edg `  G ) )  ->  G  e. UPGraph  )
2322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  ->  G  e. UPGraph  )
24 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  e.  (Edg `  G )
)
25 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k )
) )
26 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  <->  -.  ( P `  k )  =  ( P `  ( k  +  1 ) ) )
27 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  ->  ( P `  k )  e.  _V )
28 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  ->  ( P `  ( k  +  1 ) )  e.  _V )
29 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  ->  ( P `  k )  =/=  ( P `  (
k  +  1 ) ) )
3027, 28, 293jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  ->  (
( P `  k
)  e.  _V  /\  ( P `  ( k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  (
k  +  1 ) ) ) )
3126, 30sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  -> 
( ( P `  k )  e.  _V  /\  ( P `  (
k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  ( k  +  1 ) ) ) )
3231adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
(iEdg `  G ) `  ( F `  k
) ) )  -> 
( ( P `  k )  e.  _V  /\  ( P `  (
k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  ( k  +  1 ) ) ) )
3332adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( ( P `  k )  e.  _V  /\  ( P `  (
k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  ( k  +  1 ) ) ) )
342, 16upgredgpr 26037 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e. UPGraph  /\  (
(iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) )  /\  (
( P `  k
)  e.  _V  /\  ( P `  ( k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  (
k  +  1 ) ) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  ( (iEdg `  G ) `  ( F `  k )
) )
3523, 24, 25, 33, 34syl31anc 1329 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  ( (iEdg `  G ) `  ( F `  k )
) )
3635eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  /\  ( (iEdg `  G ) `  ( F `  k
) )  e.  (Edg
`  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
3736exp31 630 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( (iEdg `  G ) `  ( F `  k )
)  e.  (Edg `  G )  ->  (
( -.  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3819, 37mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) )  ->  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } ) )
3938com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
(iEdg `  G ) `  ( F `  k
) ) )  -> 
( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4013, 39jaoi 394 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) } )  \/  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4140com12 32 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( ( ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } )  \/  ( -.  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k
) ) ) )  ->  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
427, 41syl5bi 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  /\  k  e.  ( 0..^ ( # `  F
) ) )  -> 
(if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k
) ) )  -> 
( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4342ralimdva 2962 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  /\  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )
)  ->  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } ) )
4443ex 450 . . . . . . . . . . . . . 14  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( ( ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V )  /\  G  e. UPGraph  )  ->  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } ) ) )
4544com23 86 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G ) )  -> 
( A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( (iEdg `  G
) `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( (iEdg `  G ) `  ( F `  k )
) )  ->  (
( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
46453impia 1261 . . . . . . . . . . . 12  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( ( ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V )  /\  G  e. UPGraph  )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } ) )
4746impcom 446 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) ) )  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
485, 6, 473jca 1242 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  /\  G  e. UPGraph  )  /\  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) ) )  ->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4948exp31 630 . . . . . . . . 9  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( G  e. UPGraph  ->  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
5049com23 86 . . . . . . . 8  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  (
( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) } ,  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( F `  k )
) ) )  -> 
( G  e. UPGraph  ->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
514, 50sylbid 230 . . . . . . 7  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (Walks `  G ) P  ->  ( G  e. UPGraph  ->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
5251impd 447 . . . . . 6  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  (
( F (Walks `  G ) P  /\  G  e. UPGraph  )  ->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
5352impcom 446 . . . . 5  |-  ( ( ( F (Walks `  G ) P  /\  G  e. UPGraph  )  /\  ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V ) )  -> 
( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
542, 3isupwlk 41717 . . . . . 6  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (UPWalks `  G ) P 
<->  ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
5554adantl 482 . . . . 5  |-  ( ( ( F (Walks `  G ) P  /\  G  e. UPGraph  )  /\  ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V ) )  -> 
( F (UPWalks `  G
) P  <->  ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
5653, 55mpbird 247 . . . 4  |-  ( ( ( F (Walks `  G ) P  /\  G  e. UPGraph  )  /\  ( G  e.  _V  /\  F  e.  _V  /\  P  e. 
_V ) )  ->  F (UPWalks `  G ) P )
5756exp31 630 . . 3  |-  ( F (Walks `  G ) P  ->  ( G  e. UPGraph  ->  ( ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V )  ->  F (UPWalks `  G
) P ) ) )
581, 57mpid 44 . 2  |-  ( F (Walks `  G ) P  ->  ( G  e. UPGraph  ->  F (UPWalks `  G
) P ) )
5958impcom 446 1  |-  ( ( G  e. UPGraph  /\  F (Walks `  G ) P )  ->  F (UPWalks `  G
) P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975  Walkscwlks 26492  UPWalkscupwlks 41714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-upwlks 41715
This theorem is referenced by:  upgrwlkupwlkb  41722
  Copyright terms: Public domain W3C validator