MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisd Structured version   Visualization version   Unicode version

Theorem latdisd 17190
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b  |-  B  =  ( Base `  K
)
latdisd.j  |-  .\/  =  ( join `  K )
latdisd.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latdisd  |-  ( K  e.  Lat  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y 
./\  z ) )  =  ( ( x 
.\/  y )  ./\  ( x  .\/  z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
Distinct variable groups:    x, y,
z, K    x, B, y, z    x,  .\/ , y,
z    x,  ./\ , y, z

Proof of Theorem latdisd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 latdisd.b . . . 4  |-  B  =  ( Base `  K
)
2 latdisd.j . . . 4  |-  .\/  =  ( join `  K )
3 latdisd.m . . . 4  |-  ./\  =  ( meet `  K )
41, 2, 3latdisdlem 17189 . . 3  |-  ( K  e.  Lat  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y 
./\  z ) )  =  ( ( x 
.\/  y )  ./\  ( x  .\/  z ) )  ->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  ./\  ( v  .\/  w
) )  =  ( ( u  ./\  v
)  .\/  ( u  ./\  w ) ) ) )
5 eqid 2622 . . . . 5  |-  (ODual `  K )  =  (ODual `  K )
65odulat 17145 . . . 4  |-  ( K  e.  Lat  ->  (ODual `  K )  e.  Lat )
75, 1odubas 17133 . . . . 5  |-  B  =  ( Base `  (ODual `  K ) )
85, 3odujoin 17142 . . . . 5  |-  ./\  =  ( join `  (ODual `  K
) )
95, 2odumeet 17140 . . . . 5  |-  .\/  =  ( meet `  (ODual `  K
) )
107, 8, 9latdisdlem 17189 . . . 4  |-  ( (ODual `  K )  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  ./\  ( v  .\/  w
) )  =  ( ( u  ./\  v
)  .\/  ( u  ./\  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y 
./\  z ) )  =  ( ( x 
.\/  y )  ./\  ( x  .\/  z ) ) ) )
116, 10syl 17 . . 3  |-  ( K  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  ./\  ( v 
.\/  w ) )  =  ( ( u 
./\  v )  .\/  ( u  ./\  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y  ./\  z
) )  =  ( ( x  .\/  y
)  ./\  ( x  .\/  z ) ) ) )
124, 11impbid 202 . 2  |-  ( K  e.  Lat  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y 
./\  z ) )  =  ( ( x 
.\/  y )  ./\  ( x  .\/  z ) )  <->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  ./\  ( v 
.\/  w ) )  =  ( ( u 
./\  v )  .\/  ( u  ./\  w ) ) ) )
13 oveq1 6657 . . . 4  |-  ( u  =  x  ->  (
u  ./\  ( v  .\/  w ) )  =  ( x  ./\  (
v  .\/  w )
) )
14 oveq1 6657 . . . . 5  |-  ( u  =  x  ->  (
u  ./\  v )  =  ( x  ./\  v ) )
15 oveq1 6657 . . . . 5  |-  ( u  =  x  ->  (
u  ./\  w )  =  ( x  ./\  w ) )
1614, 15oveq12d 6668 . . . 4  |-  ( u  =  x  ->  (
( u  ./\  v
)  .\/  ( u  ./\  w ) )  =  ( ( x  ./\  v )  .\/  (
x  ./\  w )
) )
1713, 16eqeq12d 2637 . . 3  |-  ( u  =  x  ->  (
( u  ./\  (
v  .\/  w )
)  =  ( ( u  ./\  v )  .\/  ( u  ./\  w
) )  <->  ( x  ./\  ( v  .\/  w
) )  =  ( ( x  ./\  v
)  .\/  ( x  ./\  w ) ) ) )
18 oveq1 6657 . . . . 5  |-  ( v  =  y  ->  (
v  .\/  w )  =  ( y  .\/  w ) )
1918oveq2d 6666 . . . 4  |-  ( v  =  y  ->  (
x  ./\  ( v  .\/  w ) )  =  ( x  ./\  (
y  .\/  w )
) )
20 oveq2 6658 . . . . 5  |-  ( v  =  y  ->  (
x  ./\  v )  =  ( x  ./\  y ) )
2120oveq1d 6665 . . . 4  |-  ( v  =  y  ->  (
( x  ./\  v
)  .\/  ( x  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  w )
) )
2219, 21eqeq12d 2637 . . 3  |-  ( v  =  y  ->  (
( x  ./\  (
v  .\/  w )
)  =  ( ( x  ./\  v )  .\/  ( x  ./\  w
) )  <->  ( x  ./\  ( y  .\/  w
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  w ) ) ) )
23 oveq2 6658 . . . . 5  |-  ( w  =  z  ->  (
y  .\/  w )  =  ( y  .\/  z ) )
2423oveq2d 6666 . . . 4  |-  ( w  =  z  ->  (
x  ./\  ( y  .\/  w ) )  =  ( x  ./\  (
y  .\/  z )
) )
25 oveq2 6658 . . . . 5  |-  ( w  =  z  ->  (
x  ./\  w )  =  ( x  ./\  z ) )
2625oveq2d 6666 . . . 4  |-  ( w  =  z  ->  (
( x  ./\  y
)  .\/  ( x  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  z )
) )
2724, 26eqeq12d 2637 . . 3  |-  ( w  =  z  ->  (
( x  ./\  (
y  .\/  w )
)  =  ( ( x  ./\  y )  .\/  ( x  ./\  w
) )  <->  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
2817, 22, 27cbvral3v 3181 . 2  |-  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  ./\  ( v  .\/  w ) )  =  ( ( u  ./\  v )  .\/  (
u  ./\  w )
)  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) )
2912, 28syl6bb 276 1  |-  ( K  e.  Lat  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .\/  ( y 
./\  z ) )  =  ( ( x 
.\/  y )  ./\  ( x  .\/  z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   joincjn 16944   meetcmee 16945   Latclat 17045  ODualcodu 17128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ple 15961  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-odu 17129
This theorem is referenced by:  odudlatb  17196
  Copyright terms: Public domain W3C validator