| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvexchlem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for lcvexch 34326. (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvexch.s |
|
| lcvexch.p |
|
| lcvexch.c |
|
| lcvexch.w |
|
| lcvexch.t |
|
| lcvexch.u |
|
| lcvexch.f |
|
| Ref | Expression |
|---|---|
| lcvexchlem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvexch.s |
. . . 4
| |
| 2 | lcvexch.c |
. . . 4
| |
| 3 | lcvexch.w |
. . . 4
| |
| 4 | lcvexch.t |
. . . 4
| |
| 5 | lcvexch.u |
. . . . 5
| |
| 6 | lcvexch.p |
. . . . . 6
| |
| 7 | 1, 6 | lsmcl 19083 |
. . . . 5
|
| 8 | 3, 4, 5, 7 | syl3anc 1326 |
. . . 4
|
| 9 | lcvexch.f |
. . . 4
| |
| 10 | 1, 2, 3, 4, 8, 9 | lcvpss 34311 |
. . 3
|
| 11 | 1, 6, 2, 3, 4, 5 | lcvexchlem1 34321 |
. . 3
|
| 12 | 10, 11 | mpbid 222 |
. 2
|
| 13 | 3 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 14 | 1 | lsssssubg 18958 |
. . . . . . . . 9
|
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
|
| 16 | simp2 1062 |
. . . . . . . 8
| |
| 17 | 15, 16 | sseldd 3604 |
. . . . . . 7
|
| 18 | 4 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 19 | 15, 18 | sseldd 3604 |
. . . . . . 7
|
| 20 | 6 | lsmub2 18072 |
. . . . . . 7
|
| 21 | 17, 19, 20 | syl2anc 693 |
. . . . . 6
|
| 22 | 5 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 23 | 15, 22 | sseldd 3604 |
. . . . . . . 8
|
| 24 | simp3r 1090 |
. . . . . . . 8
| |
| 25 | 6 | lsmless1 18074 |
. . . . . . . 8
|
| 26 | 23, 19, 24, 25 | syl3anc 1326 |
. . . . . . 7
|
| 27 | lmodabl 18910 |
. . . . . . . . . 10
| |
| 28 | 3, 27 | syl 17 |
. . . . . . . . 9
|
| 29 | 3, 14 | syl 17 |
. . . . . . . . . 10
|
| 30 | 29, 4 | sseldd 3604 |
. . . . . . . . 9
|
| 31 | 29, 5 | sseldd 3604 |
. . . . . . . . 9
|
| 32 | 6 | lsmcom 18261 |
. . . . . . . . 9
|
| 33 | 28, 30, 31, 32 | syl3anc 1326 |
. . . . . . . 8
|
| 34 | 33 | 3ad2ant1 1082 |
. . . . . . 7
|
| 35 | 26, 34 | sseqtr4d 3642 |
. . . . . 6
|
| 36 | 9 | 3ad2ant1 1082 |
. . . . . . 7
|
| 37 | 1, 2, 3, 4, 8 | lcvbr3 34310 |
. . . . . . . . . 10
|
| 38 | 37 | adantr 481 |
. . . . . . . . 9
|
| 39 | 3 | adantr 481 |
. . . . . . . . . . . 12
|
| 40 | simpr 477 |
. . . . . . . . . . . 12
| |
| 41 | 4 | adantr 481 |
. . . . . . . . . . . 12
|
| 42 | 1, 6 | lsmcl 19083 |
. . . . . . . . . . . 12
|
| 43 | 39, 40, 41, 42 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 44 | sseq2 3627 |
. . . . . . . . . . . . . 14
| |
| 45 | sseq1 3626 |
. . . . . . . . . . . . . 14
| |
| 46 | 44, 45 | anbi12d 747 |
. . . . . . . . . . . . 13
|
| 47 | eqeq1 2626 |
. . . . . . . . . . . . . 14
| |
| 48 | eqeq1 2626 |
. . . . . . . . . . . . . 14
| |
| 49 | 47, 48 | orbi12d 746 |
. . . . . . . . . . . . 13
|
| 50 | 46, 49 | imbi12d 334 |
. . . . . . . . . . . 12
|
| 51 | 50 | rspcv 3305 |
. . . . . . . . . . 11
|
| 52 | 43, 51 | syl 17 |
. . . . . . . . . 10
|
| 53 | 52 | adantld 483 |
. . . . . . . . 9
|
| 54 | 38, 53 | sylbid 230 |
. . . . . . . 8
|
| 55 | 54 | 3adant3 1081 |
. . . . . . 7
|
| 56 | 36, 55 | mpd 15 |
. . . . . 6
|
| 57 | 21, 35, 56 | mp2and 715 |
. . . . 5
|
| 58 | ineq1 3807 |
. . . . . . 7
| |
| 59 | simp3l 1089 |
. . . . . . . . 9
| |
| 60 | 1, 6, 2, 13, 18, 22, 16, 59, 24 | lcvexchlem2 34322 |
. . . . . . . 8
|
| 61 | 60 | eqeq1d 2624 |
. . . . . . 7
|
| 62 | 58, 61 | syl5ib 234 |
. . . . . 6
|
| 63 | ineq1 3807 |
. . . . . . 7
| |
| 64 | 6 | lsmub2 18072 |
. . . . . . . . . 10
|
| 65 | 19, 23, 64 | syl2anc 693 |
. . . . . . . . 9
|
| 66 | sseqin2 3817 |
. . . . . . . . 9
| |
| 67 | 65, 66 | sylib 208 |
. . . . . . . 8
|
| 68 | 60, 67 | eqeq12d 2637 |
. . . . . . 7
|
| 69 | 63, 68 | syl5ib 234 |
. . . . . 6
|
| 70 | 62, 69 | orim12d 883 |
. . . . 5
|
| 71 | 57, 70 | mpd 15 |
. . . 4
|
| 72 | 71 | 3exp 1264 |
. . 3
|
| 73 | 72 | ralrimiv 2965 |
. 2
|
| 74 | 1 | lssincl 18965 |
. . . 4
|
| 75 | 3, 4, 5, 74 | syl3anc 1326 |
. . 3
|
| 76 | 1, 2, 3, 75, 5 | lcvbr3 34310 |
. 2
|
| 77 | 12, 73, 76 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 df-lss 18933 df-lcv 34306 |
| This theorem is referenced by: lcvexch 34326 lsatcvat3 34339 |
| Copyright terms: Public domain | W3C validator |